Novel Recursive Fast Sort Algorithm | SpringerLink
Skip to main content

Novel Recursive Fast Sort Algorithm

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 639))

Included in the following conference series:

Abstract

Sorting algorithms are important procedures to facilitate the order of data. In this paper, author describes new recursive version of fast sort algorithm for large data sets. Examination of the recursive fast sort algorithm performance was subject to performance tests, that showed validity. It is discussed, if non recursive version is faster than recursive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonanno, F., Capizzi, G., Napoli, C.: Some remarks on the application of RNN and PRNN for the charge-discharge simulation of advanced lithium-ions battery energy storage. In: Power Electronics, Electrical Drives, Automation and Motion SPEEDAM 2012, pp. 941–945. IEEE (2012). doi:10.1109/SPEEDAM.2012.6264500

  2. Capizzi, G., Bonanno, F., Tina, G.M.: Recurrent neural network-based modeling and simulation of lead-acid batteries charge-discharge. IEEE Trans. Energy Convers. 26(2), 435–443 (2011). doi:10.1109/TEC.2010.2095015

    Article  Google Scholar 

  3. Capizzi, G., Bonanno, F., Napoli, C.: Recurrent neural network-based control strategy for battery energy storage in generation systems with intermittent renewable energy sources. In: International Conference on Clean Electrical Power ICCEP 2011, pp. 336–340. IEEE (2011). doi:10.1109/ICCEP.2011.6036300

  4. Carlsson, S., Levcopoulos, C., Petersson, O.: Sublinear merging and natural merge sort. In: Asano, T., Ibaraki, T., Imai, H., Nishizeki, T. (eds.) Algorithms. LNCS, vol. 450, pp. 251–260. Springer, Heidelberg (1990). doi:10.1007/3-540-52921-7_74

    Chapter  Google Scholar 

  5. Cole, R.: Parallel merge sort. SIAM J. Comput. 17(4), 770–785 (1988). doi:10.1137/0217049

    Article  MathSciNet  MATH  Google Scholar 

  6. Czerwinski, D.: Digital filter implementation in Hadoop data mining system. In: Gaj, P., Kwiecień, A., Stera, P. (eds.) Computer Networks. Communications in Computer and Information Science CN ’2015, vol. 522, pp. 410–420. Springer, Switzerland (2015). doi:10.1007/978-3-319-07941-7_5

    Chapter  Google Scholar 

  7. Czerwinski, D., Przylucki, S., Matejczuk, P.: Resource management in grid systems. In: Gaj, P., Stera, P. (eds.) Computer Networks. Communications in Computer and Information Science, vol. 291, pp. 101–110. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31217-5_11

    Chapter  Google Scholar 

  8. Czerwinski, D.: Numerical performance in the grid network relies on a grid appliance. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) Computer Networks. Communications in Computer and Information Science CN 2011, vol. 160, pp. 214–223. Springer, Heidelberg (2012). doi:10.1007/978-3-642-21771-5_23

    Chapter  Google Scholar 

  9. Damaševičius, R., Toldinas, J., Grigaravicius, G.: Modelling battery behaviour using chipset energy benchmarking. Elektronika Ir Elektrotechnika 19(6), 117–120 (2013). doi:10.5755/j01.eee.19.6.4577

    Google Scholar 

  10. Gabryel, M.: The bag-of-features algorithm for practical applications using the MySQL database. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 635–646. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39384-1_56

    Chapter  Google Scholar 

  11. Gabryel, M., Grycuk, R., Korytkowski, M., Holotyak, T.: Image indexing and retrieval using GSOM algorithm. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 706–714. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19324-3_63

    Chapter  Google Scholar 

  12. Gabryel, M., Woźniak, M., Damaševičius, R.: An application of differential evolution to positioning queueing systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 379–390. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19369-4_34

    Chapter  Google Scholar 

  13. Gagliano, A., Nocera, F., Patania, F., Capizzi, G.: A case study of energy efficiency retrofit in social housing units. Energy Procedia 42, 289–298 (2013)

    Article  Google Scholar 

  14. Grycuk, R., Gabryel, M., Scherer, R., Voloshynovskiy, S.: Multi-layer architecture for storing visual data based on WCF and Microsoft SQL server database. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 715–726. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19324-3_64

    Chapter  Google Scholar 

  15. Gubias, L.J.: Sorting unsorted and partially sorted lists using the natural merge sort. Softw. Pract. Experience 11(12), 1339–1340 (2006). doi:10.1002/spe.4380111211

    Google Scholar 

  16. Huang, B., Langston, M.: Practical in-place merging. Commun. ACM 31(3), 348–352 (1988)

    Article  Google Scholar 

  17. Karpovic, J., Krisciuniene, G., Ablonskis, L., Nemuraite, L.: The comprehensive mapping of semantics of business vocabulary and business rules (SBVR) to OWL 2 ontologies. Inf. Technol. Control 43(3), 289–302 (2014). doi:10.5755/j01.itc.43.3.6651

    Google Scholar 

  18. Damaševičius, R., Vasiljevas, M., Salkevicius, J., Woźniak, M.: Human Activity Recognition in AAL Environments Using Random Projections. Comput. Math. Methods Med. 2016, 4073584:1–4073584:17 (2016). doi:10.1155/2016/4073584. Hindawi Publishing Corporation

    MathSciNet  Google Scholar 

  19. Marszałek, Z., Woźniak, G., Borowik, M., Wazirali, R., Napoli, C., Pappalardo, G., Tramontana, E.: Benchmark tests on improved merge for big data processing. In: Asia-Pacific Conference on Computer Aided System Engineering APCASE 2015, 14–16 July, Quito, Ecuador, pp. 96–101. IEEE (2015). doi:10.1109/APCASE.2015.24

  20. Napoli, C., Tramontana, E., Lo Sciuto, G., Woźniak, M., Damaševičius, R., Borowik, G.: Authorship semantical identification using holomorphic Chebyshev projectors. In: Asia-Pacific Conference on Computer Aided System Engineering – APCASE 2015, 14–16 July, Quito, Ecuador, pp. 232-237. IEEE (2015) doi:10.1109/APCASE.2015.48

  21. Nowak, B.A., Nowicki, R.K., Woźniak, M., Napoli, C.: Multi-class nearest neighbour classifier for incomplete data handling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 469–480. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19324-3_42

    Chapter  Google Scholar 

  22. Nowicki, R., Nowak, B., Woźniak, M.: Application of rough sets in k nearest neighbours algorithm for classification of incomplete samples. In: Kunifuji, S., Papadopoulos, G.A., Skulimowski, A.M.J., Kacprzyk, J. (eds.) Knowledge, Information and Creativity Support Systems. Advances in Intelligent Systems and Computing KICSS 2014, vol. 416, pp. 243–257. Springer, Switzerland (2016). doi:10.1007/978-3-319-27478-2_17

    Chapter  Google Scholar 

  23. Połap, D., Woźniak, M., Napoli, C., Tramontana, E.: Real-time cloud-based game management system via Cuckoo search algorithm. Int. J. Electron. Telecommun. 61(4), 333–338 (2015). doi:10.1515/eletel-2015-0043

    Google Scholar 

  24. Połap, D., Woźniak, M., Napoli, C., Tramontana, E.: Is swarm intelligence able to create mazes? Int. J. Electron. Telecommun. 61(4), 305–310 (2015). doi:10.1515/eletel-2015-0039

    Google Scholar 

  25. Rauh, A., Arce, G.: A fast weighted median algorithm based on quick select. In: Proceedings of the IEEE International Conference on Image Processing, pp. 105–108 (2010)

    Google Scholar 

  26. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data stream mining based on the misclassification error. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1048–1059 (2015). doi:10.1109/TNNLS.2014.2333557

    Article  MathSciNet  Google Scholar 

  27. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–15 (2014). doi:10.1016/j.ins.2013.12.060

    Article  MATH  Google Scholar 

  28. Salzberg, B.: Merging sorted runs using main memory. Acta Informatica 27(3), 195–215 (1989). doi:10.1007/BF00572988

    Article  MathSciNet  MATH  Google Scholar 

  29. Napoli, C., Pappalardo, G., Tramontana, E.: A mathematical model for file fragment diffusion and a neural predictor to manage priority queues over BitTorrent. Appl. Math. Comput. Sci. 26(1), 147–160 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Napoli, C., Pappalardo, G., Tramontana, E., Zappalà, G.: A cloud-distributed GPU architecture for pattern identification in segmented detectors big-data surveys. Comput. J. 59(3), 338–352 (2016). Wegner, L., Teuhola, J. The external heap sort. IEEE Trans. Softw. Eng. 15 917-925 (1989)

    Article  Google Scholar 

  31. Woźniak, M., Gabryel, M., Nowicki, R., Nowak, B.: An application of firefly algorithm to position traffic in NoSQL database systems. In: Kunifuji, S., Papadopoulos, G.A., Skulimowski, A.M.J., Kacprzyk, J. (eds.) Knowledge, Information and Creativity Support Systems. Advances in Intelligent Systems and Computing KICSS 2014, vol. 416, pp. 259–272. Springer, Switzerland (2016). doi:10.1007/978-3-319-27478-2_18

    Chapter  Google Scholar 

  32. Woźniak, M., Marszałek, Z., Gabryel, M., Nowicki, R.: Preprocessing large data sets by the use of quick sort algorithm. In: Skulimowski, A.M.J., Kacprzyk, J. (eds.) Knowledge, Information and Creativity Support Systems: Recent Trends, Advances and Solutions. Advances in Intelligent Systems and Computing, vol. 364, pp. 111–121. Springer, Switzerland (2016). doi:10.1007/978-3-319-19090-7_9

    Chapter  Google Scholar 

  33. Woźniak, M., Połap, D., Borowik, G., Napoli, C.: A first attempt to cloud-based user verification in distributed system. In: Asia-Pacific Conference on Computer Aided System Engineering – APCASE 2015, 14–16 July, Quito, Ecuador 2015, pp. 226-231. IEEE (2015). doi:10.1109/APCASE.2015.47

  34. Woźniak, M., Kempa, W., Gabryel, M., Nowicki, R.: A finite-buffer queue with single vacation policy - analytical study with evolutionary positioning. Int. J. Appl. Math. Comput. Sci. 24(4), 887–900 (2014). doi:10.2478/amcs-2014-0065

    MathSciNet  MATH  Google Scholar 

  35. Woźniak, M., Marszałek, Z., Gabryel, M., Nowicki, R.K.: Modified merge sort algorithm for large scale data sets. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 612–622. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  36. Woźniak, M.: On applying Cuckoo search algorithm to positioning GI/M/1/N finite-buffer queue with a single vacation policy. In: Proceedings of the 12th Mexican International Conference on Artificial Intelligence – MICAI 2013, 24–30 November, Mexico City, pp. 59-64. IEEE (2013). doi:10.1109/MICAI.2013.12

  37. Zhang, W., Larson, P.A.: Dynamic memory adjustment for external mergesort. In: Proceedings of Very Large Data Bases Conference, pp. 376–385 (1997)

    Google Scholar 

  38. Zhang, W., Larson, P.A.: Buffering and read-ahead strategies for external mergesort. In: Proceedings of Very Large Data Bases Conference, pp. 523–533 (1998)

    Google Scholar 

  39. Zheng, L., Larson, P.A.: Speeding up external mergesort. IEEE Trans. Knowl. Data Eng. 8(2), 322–332 (1996). doi:10.1109/69.494169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Marszałek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Marszałek, Z. (2016). Novel Recursive Fast Sort Algorithm. In: Dregvaite, G., Damasevicius, R. (eds) Information and Software Technologies. ICIST 2016. Communications in Computer and Information Science, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-46254-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46254-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46253-0

  • Online ISBN: 978-3-319-46254-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics