Modelling of Adequate Costs of Utilities Services | SpringerLink
Skip to main content

Modelling of Adequate Costs of Utilities Services

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 639))

Included in the following conference series:

Abstract

The paper propose methodology for benchmark modelling of adequate costs of utilities services, which is based on the data analysis of the factual cases (key performance indicators of utilities as the predictors). The proposed methodology was tested by modelling of Latvian water utilities with three tools: (1) a classical version of the multi-layer perceptron with error back-propagation training algorithm was sharpened up with task-specific monotony tests, (2) the fitting of the generalized additive model using the programming language R ensured the opportunity to evaluate the statistical significance and confidence bands of predictors, (3) the sequential iterative nonlinear regression process with minimizing mean squared error provided the notion of the impact of each predictor on the searched regularity. The quality of models is high: the adjusted determination coefficient is greater than 0.75, explained deviance exceeds 0.80, while the correlation between the respective modelled values exceeds even 0.95.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Public Utilities Commission of Latvia. Ūdenssaimniecības pakalpojumu tarifu aprēķināšanas metodika (in Latvian). http://likumi.lv/doc.php?id=209845

  2. National Commission for Energy Control and Prices of Lithuania. Geriamojo vandens tiekimo ir nuoteku tvarkymo bei paviršiniu nuoteku tvarkymo paslaugu kainu nustatymo metodika (in Lithuanian). https://www.e-tar.lt/portal/lt/legalAct/4c3e62a08a9311e4a98a9f2247652cf4

  3. Ziemele, J., Vigants, G., Vitolins, V., et al.: District heating systems performance analyses; heat energy tariff. Environ. Clim. Technol. 13(1), 32–43 (2014). Scientific J. of RTU

    Google Scholar 

  4. Guerrini, A., Romano, G., Campadelli, B.: Factors affecting the performance of water utility companies. Int. J. Pub. Sect. Manage. 24, 543–566 (2011)

    Article  Google Scholar 

  5. Regulatory Implications of District Heating. https://www.yumpu.com/en/document/view/35150691/regulatory-implications-of-district-heating

  6. European Commission. Costs for Municipal Waste management in the EU; Final Report to Directorate General Environment. http://ec.europa.eu/environment/waste/studies/eucostwaste_management.htm

  7. Shinde, V.R., Hirayama, N., Mugita, A., Itoh, C.: Revising the existing performance indicator system for small water supply utilities in Japan. Urban Water J. 10, 377–393 (2013)

    Article  Google Scholar 

  8. Reynaud, A., Thomas, A.: Firm’s profitability and regulation in water and network industries: an empirical analysis. Utilities Policy 24, 48–58 (2013)

    Article  Google Scholar 

  9. Marques, R.C., De Witte, K.: Towards a benchmarking paradigm in European water utilities. Public Money Manage. 30, 42–48 (2010)

    Article  Google Scholar 

  10. Berg, S.V.: Water Utility Benchmarking; Measurement, Methodologies, Performance Incentives. IWA Publishing, London (2010)

    Google Scholar 

  11. Marques, R.C., Simoes, P., Pires, J.S.: Performance benchmarking in utility regulation: the worldwide experience. Polish J. Environ. Stud. 20, 125–132 (2011)

    Google Scholar 

  12. Dane, P., Schmitz, T.: A sharp improvement in the efficiency of Dutch water utilities: benchmarking of water supply in the Netherlands 1997–2007. Water Util. Manage. Int. 3, 17–19 (2008)

    Google Scholar 

  13. Vilanova, M.R.N., Filho, P.M., Balestieri, J.A.P.: Performance measurement and indicators for water supply management: review and international cases. Renew. Sustain. Energy Rev. 43, 1–12 (2015)

    Article  Google Scholar 

  14. Calatrava, J.: Modelling water markets under uncertain water supply. Eur. Rev. Agric. Econ. 32, 119–142 (2005)

    Article  Google Scholar 

  15. Clark, R., Sivaganesan, M., Selvakumar, A., Sethi, V.: Cost models for water supply distribution systems. J. Water Resour. Plann. Manage. 128, 312–321 (2002)

    Article  Google Scholar 

  16. Malmsten, M., Lekkas, D.F.: Cost analysis of urban water supply and waste water treatment processes to support decisions and policy making: application to a number of Swedish communities. Desalin. Water Treat. 18, 327–340 (2010)

    Article  Google Scholar 

  17. Haykin, S.: Neural Networks and Learning Machines. Pearson Education Inc., Upper Saddle River (2009)

    Google Scholar 

  18. Shi, J., Wang, J., Macdonald, D.D.: Prediction of primary water stress corrosion crack growth rates in alloy 600 using artificial neural networks. Corros. Sci. 92, 217–227 (2015)

    Article  Google Scholar 

  19. Maier, H.R., Dandy, G.C.: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model Softw. 15, 101–124 (2000)

    Article  Google Scholar 

  20. Bini Verona, F., Ceraolo, M.: Use of neural networks for customer tariff exploitation by means of short-term load forecasting - prediction and system modelling. Neurocomputing 23, 135–149 (1998)

    Article  Google Scholar 

  21. Goncalves, F., Ramos, H.: Hybrid energy system evaluation in water supply systems: artificial neural network approach and methodology. J. Water Supply Res. Technol. 61, 59–72 (2012)

    Article  Google Scholar 

  22. Buja, A., Hastie, T., Tibshirani, R.: Linear smoothers and additive models. Ann. Stat. 17, 453–510 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Chapman & Hall/CRC, Boca Raton (1990)

    MATH  Google Scholar 

  24. Motulsky, H.J., Ransnas, L.A.: Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1, 365–374 (1987)

    Google Scholar 

  25. Seber, G.A.F., Wild, C.F.: Nonlinear Regression. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  26. Finlay, S.: Predictive Analysis, Data Mining and the Big Data; Myths. Misconceptions and Methods. Palgrave Macmillan, Basingstoke (2014)

    Book  Google Scholar 

  27. Barzdins, J., Barzdins, G., Apsitis, K., Sarkans, U.: Towards efficient inductive synthesis of expressions from input/output examples. In: Jantke, K.P., Kobayashi, S., Tomita, E., Yokomori, T. (eds.) ALT 1993; Proceedings of the 4th International Workshop on Algorithmic Learning Theory, pp. 59–72. Springer, Heidelberg (1993)

    Google Scholar 

  28. Leek, J.: The Elements of Data Analytic Style. Leanpub, Victoria (2015)

    Google Scholar 

  29. Alpaydin, E.: Introduction to Machine Learning. The MIT Press, Cambridge (2010)

    MATH  Google Scholar 

  30. Mitchell, T.M.: Machine Learning. McGraw-Hill Companies Inc., Columbus (1997)

    MATH  Google Scholar 

  31. Wood, S.N.: Generalized Additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  32. Wood, S.N.: mgcv: mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation; R package version 1.8-11 (2016). https://cran.r-project.org/web/packages/mgcv/mgcv.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girts Karnitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zuters, J., Valeinis, J., Karnitis, G., Karnitis, E. (2016). Modelling of Adequate Costs of Utilities Services. In: Dregvaite, G., Damasevicius, R. (eds) Information and Software Technologies. ICIST 2016. Communications in Computer and Information Science, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-46254-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46254-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46253-0

  • Online ISBN: 978-3-319-46254-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics