Modelling Argumentative Behaviour in Parliamentary Debates: Data Collection, Analysis and Test Case | SpringerLink
Skip to main content

Modelling Argumentative Behaviour in Parliamentary Debates: Data Collection, Analysis and Test Case

  • Conference paper
  • First Online:
Principles and Practice of Multi-Agent Systems (CMNA 2015, IWEC 2015, IWEC 2014)

Abstract

In this paper we apply the information state update (ISU) machinery to tracking and understanding the argumentative behaviour of participants in a parliamentary debate in order to predict its outcome. We propose to use the ISU approach to model the arguments of the debaters and the support/attack links between them as part of the formal representations of a participant’s information state. We first consider the identification of claims and evidence relations to their premises as an argument mining task. It is not sufficient, however, to indicate what relations occur without establishing how these relations are created and verified during the interaction. For this purpose the model requires a detailed specification of the creation, maintenance and use of shared beliefs. The ISU model provides procedures for incorporating beliefs and expectations shared between speaker and hearers in the tracking model. To evaluate the content of the tracked information states, we compare them to those of the human ‘concluder’ who wraps up a debate, stating the claims which the majority of the debaters have agreed on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Youth Parliaments have been founded in many European countries and all over the world, e.g. in Greece, South Africa, Columbia. The European Youth Parliament is also active since 1987.

  2. 2.

    http://www.ukyouthparliament.org.uk/.

  3. 3.

    See as example http://www.youtube.com/watch?v=g2Fg-LJHPA4.

  4. 4.

    Here and henceforth Dk stands for Debater k; the subscript is the index of the identified functional segment.

  5. 5.

    http://groups.inf.ed.ac.uk/maptask/.

  6. 6.

    http://groups.inf.ed.ac.uk/ami/corpus/.

  7. 7.

    http://nlp.stanford.edu/software/corenlp.shtml.

  8. 8.

    http://scikit-learn.org/stable/.

  9. 9.

    The inter-annotator agreement between three experienced annotators on this task was very high, 0.87 in terms of Cohen’s kappa.

  10. 10.

    Here and henceforth _x.y is the index assigned to the conclusion of an ADU, where x indicates the debater index and y stands for the index of an ADU conclusion.

  11. 11.

    Note we do not distinguish between rebuttals and undercutters in this study.

  12. 12.

    http://svn.ask.it.usyd.edu.au/trac/candc/wiki/boxer.

  13. 13.

    http://wordnet.princeton.edu.

  14. 14.

    For the sake of simplicity we do not spell out the semantic content of the propositions and leave out evidence links here.

References

  1. Walton, D.N.: Argumentation Schemes for Presumptive Reasoning. Routledge, Abingdon (1996)

    Google Scholar 

  2. Moens, M., Boiy, E., Mochales-Palau, R., Reed, C.: Automatic detection of arguments in legal texts. In: Proceedings of the ICAIL 2007, Stanford, California, pp. 225–230 (2007)

    Google Scholar 

  3. Reed, C., Mochales-Palau, R., Rowe, G., Moens, M.: Language resources for studying argument. In: Proceedings of the LREC 2008, Marrakech, Morocco, pp. 2613–2618 (2008)

    Google Scholar 

  4. Teufel, S.: Argumentative zoning: information extraction from scientific text. Ph.D. thesis, University of Edinburgh (1999)

    Google Scholar 

  5. Toulmin, S.: The Uses of Arguments. Cambridge University Press, Cambridge (1958)

    Google Scholar 

  6. Petukhova, V., Bunt, H.: Incremental recognition and prediction of dialogue acts. In: Bunt, H., Bos, J., Pulman, S. (eds.) Computing Meaning, vol. 4, pp. 235–256. Springer, Dordrecht (2014)

    Chapter  Google Scholar 

  7. Keizer, S.: Reasoning under uncertainty in natural language dialogue using Bayesian networks. Ph.D. thesis, Twente University Press, The Netherlands (2003)

    Google Scholar 

  8. Lendvai, P., van den Bosch, A., Krahmer, E., Canisius, S.: Memory-based robust interpretation of recognised speech. In: Proceedings of the SPECOM 2004, St. Petersburgh, Russia, pp. 415–422 (2004)

    Google Scholar 

  9. Stolcke, A., Ries, K., Coccaro, K., Shriberg, E., Bates, R., Jurafsky, D., Taylor, P., Martin, R., van Ess-Dykema, C., Meteer, M.: Dialogue act modeling for automatic tagging and recognition of conversational speech. Comput. Linguist. 26(3), 339–373 (2000)

    Article  Google Scholar 

  10. Punyakanok, V., Roth, D.: The use of classifiers in sequential inference. In: NIPS, pp. 995–1001 (2001)

    Google Scholar 

  11. Klein, W.: Argumentation and argument. Zeitschrift für Literaturwissenschaft und Linguistik 10(38/39), 9–56 (1980)

    Google Scholar 

  12. Freeman, J.B.: Argument Structure: Representation and Theory. Argumentation Library, vol. 18. Springer, Berlin (2011)

    Book  Google Scholar 

  13. Peldszus, A., Stede, M.: From argument diagrams to argumentation mining in texts: a survey. Int. J. Cogn. Inf. Natural Intell. (IJCINI) 7(1), 1–31 (2013)

    Article  Google Scholar 

  14. Mann, W., Thompson, S.: Rhetorical Structure Theory: Toward a Functional Theory of Text Organisation. MIT Press, Cambridge (1988)

    Google Scholar 

  15. Sanders, T., Spooren, W., Noordman, L.: Toward a taxonomy of coherence relations. Discourse Process. 15, 1–35 (1992)

    Article  Google Scholar 

  16. Hobbs, J.: On the coherence and structure of discourse. Research report 85–37, CSLI, Stanford (1985)

    Google Scholar 

  17. Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  18. Cohen, R.: A computational theory of the function of clue words in argument understanding. In: Proceedings of the COLING-ACL 1984, Standford, pp. 251–258 (1984)

    Google Scholar 

  19. Poesio, M., Traum, D.: Towards an axiomatization of dialogue acts. In: Proceedings of the Twente Workshop on the Formal Semantics and Pragmatics of Dialogues, pp. 207–222 (1998)

    Google Scholar 

  20. Bunt, H.: Information dialogues as communicative action in relation to partner modelling and information processing. In: Taylor, M., Neel, F., Bouwhuis, D. (eds.) The Structure of Multimodal Dialogue, vol. 1, pp. 47–73. Elsevier, North Holland (1989)

    Google Scholar 

  21. ISO: Language resource management - Semantic annotation framework - Part 2: Dialogue acts. ISO 24617–2. ISO Central Secretariat, Geneva (2012)

    Google Scholar 

  22. Sporleder, C., Lascarides, A.: Using automatically labelled examples to classify rhetorical relations: an assessment. Nat. Lang. Eng. 14(03), 369–416 (2008)

    Article  Google Scholar 

  23. Marcu, D.: The rhetorical parsing of natural language texts. In: Proceedings of of Association for Computational Linguistics Annual Conference (ACL), pp. 96–103 (1997)

    Google Scholar 

  24. Hirschberg, J., Litman, D.: Empirical studies on the disambiguation of cue phrases. Comput. Linguist. 25(4), 501–530 (1993)

    Google Scholar 

  25. Sacks, H., Schegloff, E., Jefferson, G.: A simplest systematics for the organization of turn-taking for conversation. Language 50(4), 696–735 (1974)

    Article  Google Scholar 

  26. Grosz, B.J., Sidner, C.L.: Attention, intentions, and the structure of discourse. Comput. Linguist. 12, 175–204 (1986)

    Google Scholar 

  27. Ishimoto, Y., Tsuchiya, T., Koiso, H., Den, Y.: Towards automatic transformation between different transcription conventions: prediction of intonation markers from linguistic and acoustic features. In: Proceedings of the LREC 2014, Reykjavik, Iceland, pp. 311–315 (2014)

    Google Scholar 

  28. Prasad, R., Dinesh, N., Lee, A., Miltsakaki, E., Robaldo, L., Joshi, A., Webber, B.: The penn discourse treebank 2.0. In: Proceedings of the LREC 2008, Marrakech, Maroc, pp. 2961–2968 (2008)

    Google Scholar 

  29. Hovy, E., Maier, E.: Parsimonious of profligate: how many and which discourse structure relations? (1995, unpublished manuscript)

    Google Scholar 

  30. Bos, J.: Towards wide-coverage semantic interpretation. In: Proceedings of the 6th International Conference on Computational Semantics (IWCS-6), pp. 42–53 (2005)

    Google Scholar 

  31. Bunt, H.: Annotations that effectively contribute to semantic interpretation. In: Bunt, H., Bos, J., Pulman, S. (eds.) Computing Meaning, vol. 47, pp. 49–69. Springer, Dordrecht (2014)

    Chapter  Google Scholar 

  32. Bunt, H.: A context-change semantics for dialogue acts. In: Bunt, H., Bos, J., Pulman, S. (eds.) Computing Meaning, vol. 4, pp. 177–201. Springer, Dordrecht (2014)

    Chapter  Google Scholar 

  33. Searle, J.R.: Speech Acts. Cambridge University Press, Cambridge (1969)

    Book  Google Scholar 

  34. Fischer, G.: User modeling in human-computer interaction. User Model. User-Adap. Inter. 11, 65–68 (2001)

    Article  MATH  Google Scholar 

  35. Bunt, H., Keizer, S., Morante, R.: A computational model of grounding in dialogue. In: Proceedings of SIGDIAL 2007, Antwerp, Belgium, pp. 283–290 (2007)

    Google Scholar 

  36. Florou, E., Konstantopoulos, S., Koukourikos, A., Karampiperis, P.: Argument extraction for supporting public policy formulation. In: Proceedings of the LATECH Workshop, Sofia, Bulgaria (2013)

    Google Scholar 

Download references

Acknowledgements

The underlying research project is partly funded by the EU FP7 Metalogue project, under grant agreement number 611073. We are also very thankful to anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volha Petukhova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Petukhova, V., Malchanau, A., Bunt, H. (2016). Modelling Argumentative Behaviour in Parliamentary Debates: Data Collection, Analysis and Test Case. In: Baldoni, M., et al. Principles and Practice of Multi-Agent Systems. CMNA IWEC IWEC 2015 2015 2014. Lecture Notes in Computer Science(), vol 9935. Springer, Cham. https://doi.org/10.1007/978-3-319-46218-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46218-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46217-2

  • Online ISBN: 978-3-319-46218-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics