Decision-Making with Belief Interval Distance | SpringerLink
Skip to main content

Decision-Making with Belief Interval Distance

  • Conference paper
  • First Online:
Belief Functions: Theory and Applications (BELIEF 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9861))

Included in the following conference series:

Abstract

In this paper we propose a new general method for decision-making under uncertainty based on the belief interval distance. We show through several simple illustrative examples how this method works and its ability to provide reasonable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The notation with hat indicates the decision taken. Here \(\hat{\theta }\) specifies that the decision taken is only a singleton of \(\varTheta \).

  2. 2.

    This simple principle has also been proposed by Essaid et al. [26] using Jousselme’s distance.

  3. 3.

    Empty set excluded.

  4. 4.

    For instance, making a choice only among the singletons of \(2^\varTheta \).

References

  1. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  2. Dempster, A.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Smets, P.: Practical uses of belief functions. In: Laskey, K.B., Prade, H. (eds.) Uncertainty in Artificial Intelligence 15, Stockholm, Sweden, pp. 612–621 (1999)

    Google Scholar 

  4. Zadeh, L.A.: On the validity of Dempster’s rule of combination. Memo M79/24, University of California, Berkeley, USA (1979)

    Google Scholar 

  5. Lemmer, J.: Confidence factors, empiricism and the Dempster-Shafer theory of evidence. In: Proceedings of the 1st Conference on Uncertainty in Artificial Intelligence (UAI-85), pp. 160–176 (1985)

    Google Scholar 

  6. Pearl, J.: Reasoning with belief functions: an analysis of compatibility. IJAR 4, 363–389 (1990). with Rejoinder in IJAR, vol. 6, pp. 425–443 (1992)

    MathSciNet  MATH  Google Scholar 

  7. Voorbraak, F.: On the justification of Dempster’s rule of combination. Department of Philosophy, University of Utrecht, The Netherlands, Logic Group Preprint Series, No. 42 (1988)

    Google Scholar 

  8. Wang, P.: A defect in Dempster-Shafer theory. In: Proceedings of 10th Conference on Uncertainty in AI, pp. 560–566 (1994)

    Google Scholar 

  9. Gelman, A.: The boxer, the wrestler, and the coin flip: a paradox of robust Bayesian inference and belief functions. Am. Stat. 60(2), 146–150 (2006)

    Article  MathSciNet  Google Scholar 

  10. Dezert, J., Wang, P., Tchamova, A.: On the validity of Dempster-Shafer theory. In: Proceedings of Fusion 2012, Singapore (2012)

    Google Scholar 

  11. Tchamova, A., Dezert, J.: On the behavior of Dempster’s rule of combination and the foundations of Dempster-Shafer theory. In: Proceedings of IEEE IS 2012 Conference, Sofia, Bulgaria (2012)

    Google Scholar 

  12. Dezert, J., Tchamova, A., Han, D., Tacnet, J.-M.: Why Dempster’s rule doesn’t behave as Bayes rule with informative priors. In: Proceedings of 2013 IEEE INISTA 2013, Albena, Bulgaria (2013)

    Google Scholar 

  13. Dezert, J., Tchamova, A.: On the validity of Dempster’s fusion rule and its interpretation as a generalization of Bayesian fusion rule. IJIS 29(3), 223–252 (2014)

    Google Scholar 

  14. Smarandache, F., Dezert, J.: Advances and applications of DSmT for information fusion, vol. 1–4, ARP, USA (2004–2015). http://www.onera.fr/fr/staff/jean-dezert

  15. Srivastava, R.P.: Decision making under ambiguity: a belief-function perspective. Arch. Control Sci. 6 (XLII)(1–2), 5–27 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Nguyen, H.T., Walker, E.A.: On decision making using belief functions. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Shafer Theory of Evidence. Wiley, New York (1994)

    Google Scholar 

  17. Jaffray, J.-Y.: Utility theory for belief functions. Oper. Res. Lett. 8, 107–112 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Strat, T.M.: Decision analysis using belief functions. IJAR 4(5), 6 (1990)

    MATH  Google Scholar 

  19. Yager, R.R.: Decision making under Dempster-Shafer uncertainties. Int. J. Gen. Syst. 20, 233–245 (1992)

    Article  MATH  Google Scholar 

  20. Smets, P., Kennes, R.: The transferable belief model. Artif. Int. 66, 191–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cobb, B.R., Shenoy, P.P.: On the plausibility transformation method for translating belief function models to probability models. IJAR 41(3), 314–330 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Dezert, J., Smarandache, F.: A new probabilistic transformation of belief mass assignment. In: Proceedings of the Fusion 2008, Cologne, Germany (2008)

    Google Scholar 

  23. Han, D., Dezert, J., Yang, Y.: New distance measures of evidence based on belief intervals. In: Proceedings of the Belief 2014, Oxford, UK (2014)

    Google Scholar 

  24. Han, D., Dezert, J., Yang, Y.: Belief interval based distance measures in the theory of belief functions (2016, submitted)

    Google Scholar 

  25. Irpino, A., Verde, R.: Dynamic clustering of interval data using a wasserstein-based distance. Pattern Recogn. Lett. 29, 1648–1658 (2008)

    Article  MATH  Google Scholar 

  26. Essaid, A., Martin, A., Smits, G., Ben Yaghlane, B.: A distance-based decision in the credal level. In: International Conference AISC 2014, Sevilla, Spain (2014)

    Google Scholar 

  27. Jousselme, A.-L., Grenier, D., Bossé, É.: A new distance between two bodies of evidence. Inf. Fusion 2(2), 91–101 (2001)

    Article  Google Scholar 

  28. Jousselme, A.-L., Maupin, P.: Distances in evidence theory: comprehensive survey and generalizations. IJAR 53(2), 118–145 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Bouchard, M., Jousselme, A.-L., Doré, P.-E.: A proof for the positive definiteness of the Jaccard index matrix. IJAR 54, 615–626 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Dezert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dezert, J., Han, D., Tacnet, JM., Carladous, S., Yang, Y. (2016). Decision-Making with Belief Interval Distance. In: Vejnarová, J., Kratochvíl, V. (eds) Belief Functions: Theory and Applications. BELIEF 2016. Lecture Notes in Computer Science(), vol 9861. Springer, Cham. https://doi.org/10.1007/978-3-319-45559-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45559-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45558-7

  • Online ISBN: 978-3-319-45559-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics