Abstract
In this paper we propose a new general method for decision-making under uncertainty based on the belief interval distance. We show through several simple illustrative examples how this method works and its ability to provide reasonable results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The notation with hat indicates the decision taken. Here \(\hat{\theta }\) specifies that the decision taken is only a singleton of \(\varTheta \).
- 2.
This simple principle has also been proposed by Essaid et al. [26] using Jousselme’s distance.
- 3.
Empty set excluded.
- 4.
For instance, making a choice only among the singletons of \(2^\varTheta \).
References
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
Dempster, A.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)
Smets, P.: Practical uses of belief functions. In: Laskey, K.B., Prade, H. (eds.) Uncertainty in Artificial Intelligence 15, Stockholm, Sweden, pp. 612–621 (1999)
Zadeh, L.A.: On the validity of Dempster’s rule of combination. Memo M79/24, University of California, Berkeley, USA (1979)
Lemmer, J.: Confidence factors, empiricism and the Dempster-Shafer theory of evidence. In: Proceedings of the 1st Conference on Uncertainty in Artificial Intelligence (UAI-85), pp. 160–176 (1985)
Pearl, J.: Reasoning with belief functions: an analysis of compatibility. IJAR 4, 363–389 (1990). with Rejoinder in IJAR, vol. 6, pp. 425–443 (1992)
Voorbraak, F.: On the justification of Dempster’s rule of combination. Department of Philosophy, University of Utrecht, The Netherlands, Logic Group Preprint Series, No. 42 (1988)
Wang, P.: A defect in Dempster-Shafer theory. In: Proceedings of 10th Conference on Uncertainty in AI, pp. 560–566 (1994)
Gelman, A.: The boxer, the wrestler, and the coin flip: a paradox of robust Bayesian inference and belief functions. Am. Stat. 60(2), 146–150 (2006)
Dezert, J., Wang, P., Tchamova, A.: On the validity of Dempster-Shafer theory. In: Proceedings of Fusion 2012, Singapore (2012)
Tchamova, A., Dezert, J.: On the behavior of Dempster’s rule of combination and the foundations of Dempster-Shafer theory. In: Proceedings of IEEE IS 2012 Conference, Sofia, Bulgaria (2012)
Dezert, J., Tchamova, A., Han, D., Tacnet, J.-M.: Why Dempster’s rule doesn’t behave as Bayes rule with informative priors. In: Proceedings of 2013 IEEE INISTA 2013, Albena, Bulgaria (2013)
Dezert, J., Tchamova, A.: On the validity of Dempster’s fusion rule and its interpretation as a generalization of Bayesian fusion rule. IJIS 29(3), 223–252 (2014)
Smarandache, F., Dezert, J.: Advances and applications of DSmT for information fusion, vol. 1–4, ARP, USA (2004–2015). http://www.onera.fr/fr/staff/jean-dezert
Srivastava, R.P.: Decision making under ambiguity: a belief-function perspective. Arch. Control Sci. 6 (XLII)(1–2), 5–27 (1997)
Nguyen, H.T., Walker, E.A.: On decision making using belief functions. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Shafer Theory of Evidence. Wiley, New York (1994)
Jaffray, J.-Y.: Utility theory for belief functions. Oper. Res. Lett. 8, 107–112 (1989)
Strat, T.M.: Decision analysis using belief functions. IJAR 4(5), 6 (1990)
Yager, R.R.: Decision making under Dempster-Shafer uncertainties. Int. J. Gen. Syst. 20, 233–245 (1992)
Smets, P., Kennes, R.: The transferable belief model. Artif. Int. 66, 191–234 (1994)
Cobb, B.R., Shenoy, P.P.: On the plausibility transformation method for translating belief function models to probability models. IJAR 41(3), 314–330 (2006)
Dezert, J., Smarandache, F.: A new probabilistic transformation of belief mass assignment. In: Proceedings of the Fusion 2008, Cologne, Germany (2008)
Han, D., Dezert, J., Yang, Y.: New distance measures of evidence based on belief intervals. In: Proceedings of the Belief 2014, Oxford, UK (2014)
Han, D., Dezert, J., Yang, Y.: Belief interval based distance measures in the theory of belief functions (2016, submitted)
Irpino, A., Verde, R.: Dynamic clustering of interval data using a wasserstein-based distance. Pattern Recogn. Lett. 29, 1648–1658 (2008)
Essaid, A., Martin, A., Smits, G., Ben Yaghlane, B.: A distance-based decision in the credal level. In: International Conference AISC 2014, Sevilla, Spain (2014)
Jousselme, A.-L., Grenier, D., Bossé, É.: A new distance between two bodies of evidence. Inf. Fusion 2(2), 91–101 (2001)
Jousselme, A.-L., Maupin, P.: Distances in evidence theory: comprehensive survey and generalizations. IJAR 53(2), 118–145 (2012)
Bouchard, M., Jousselme, A.-L., Doré, P.-E.: A proof for the positive definiteness of the Jaccard index matrix. IJAR 54, 615–626 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Dezert, J., Han, D., Tacnet, JM., Carladous, S., Yang, Y. (2016). Decision-Making with Belief Interval Distance. In: Vejnarová, J., Kratochvíl, V. (eds) Belief Functions: Theory and Applications. BELIEF 2016. Lecture Notes in Computer Science(), vol 9861. Springer, Cham. https://doi.org/10.1007/978-3-319-45559-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-45559-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45558-7
Online ISBN: 978-3-319-45559-4
eBook Packages: Computer ScienceComputer Science (R0)