Abstract
In this paper, we address two key aspects of solving methods based on tree-decomposition. First, we propose an algorithm computing decompositions that allows to bound the size of separators, which is a crucial parameter to limit the space complexity, and thus the feasibility of such methods. Moreover, we show how it is possible to dynamically modify the considered decomposition during the search. This dynamic modification can offer more freedom to the variable ordering heuristics. This also allows to better use the information gained during the search while controlling the size of the required memory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The 2-section of a hypergraph (X, C) is the graph \((X,C')\) where \(C'=\{ \{x,y\} | \exists c \in C, \{x,y\} \subseteq c\}\) [14].
- 2.
For any \(Y \subseteq X\), the subgraph G[Y] of \(G=(X,C)\) induced by Y is the graph \((Y,C_Y)\) where \(C_Y = \{\{x,y\}\in C | x,y \in Y\}\).
- 3.
A structural good (resp. nogood) of \(E_i\) w.r.t. \(E_j\) (with \(E_j\) a child of \(E_i\)) is a consistent assignment of \(E_i \cap E_j\) which can (resp. cannot) be consistently extended on \(Desc(E_j)\) [19].
- 4.
Given a CSP \(P=(X,D,C)\) and a sequence of decisions \(\varSigma \), \(\varDelta \) is a nogood of P if \(P_{|\varDelta }\) has no solution where \(P_{|\varDelta }\) is the CSP \((X,D',C)\) with \(D'=(d'_{x_1},\ldots ,d'_{x_n})\) and for each positive decision \(x_i = v_i\), \(d'_{x_i} =\{v_i\}\) and for each negative decision \(x_i \ne v_i\), \(d'_{x_i} = d_{x_i} \backslash \{v_i\}\). If \(x_i\) does not appear in \(\varDelta \) then \(d'_{x_i} = d_{x_i}\) [23].
- 5.
References
de Givry, S., Schiex, T., Verfaillie, G.: Exploiting tree decomposition and soft local consistency in weighted CSP. In Proceedings of AAAI, pp. 22–27 (2006)
Rose, D.J.: A graph theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Graph Theory and Computing, pp. 183–217. Academic Press (1972)
Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco (2003)
Allouche, D., de Givry, S., Schiex, T.: Towards parallel non serial dynamic programming for solving hard weighted CSP. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 53–60. Springer, Heidelberg (2010)
Jégou, P., Kanso, H., Terrioux, C.: An algorithmic framework for decomposing constraint networks. In: Proceedings of ICTAI, pp. 1–8 (2015)
Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of ECAI, pp. 146–150 (2004)
Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Jégou, P., Ndiaye, S.N., Terrioux, C.: Dynamic management of heuristics for solving structured CSPs. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 364–378. Springer, Heidelberg (2007)
Jégou, P., Terrioux, C.: Combining restarts, nogoods and decompositions for solving CSPs. In: Proceedings of ECAI, pp. 465–470 (2014)
Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, New York (2006)
Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artif. Intell. 124, 243–282 (2000)
Robertson, N., Seymour, P.D.: Graph minors II: algorithmic aspects of treewidth. Algorithms 7, 309–322 (1986)
Berge, C.: Graphs and Hypergraphs. Elsevier, New York (1973)
Cabon, C., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency. Constraints 4, 79–89 (1999)
Arnborg, S., Corneil, D., Proskuroswki, A.: Complexity of finding embeddings in a k-tree. SIAM J. Disc. Math. 8, 277–284 (1987)
Jégou, P., Ndiaye, S.N., Terrioux, C.: Computing and exploiting tree-decompositions for solving constraint networks. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 777–781. Springer, Heidelberg (2005)
Jégou, P., Terrioux, C.: Tree-decompositions with connected clusters for solving constraint networks. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 407–423. Springer, Heidelberg (2014)
Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint networks. Artif. Intell. 146, 43–75 (2003)
Li, W., van Beek, P.: Guiding Real-World SAT solving with dynamic hypergraph separator decomposition. In: Proceedings of ICTAI, pp. 542–548 (2004)
Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012)
Sabin, D., Freuder, E.: Contradicting conventional wisdom in constraint satisfaction. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 125–129. Springer, Heidelberg (1994)
Lecoutre, C., Saïs, L., Tabary, S., Vidal, V.: Recording and minimizing nogoods from restarts. JSAT 1(3–4), 147–167 (2007)
Lecoutre, C., Likitvivatanavong, C., Shannon, S., Yap, R., Zhang, Y.: Maintaining arc consistency with multiple residues. Constraint Program. Lett. 2, 3–19 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Jégou, P., Kanso, H., Terrioux, C. (2016). Towards a Dynamic Decomposition of CSPs with Separators of Bounded Size. In: Rueher, M. (eds) Principles and Practice of Constraint Programming. CP 2016. Lecture Notes in Computer Science(), vol 9892. Springer, Cham. https://doi.org/10.1007/978-3-319-44953-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-44953-1_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44952-4
Online ISBN: 978-3-319-44953-1
eBook Packages: Computer ScienceComputer Science (R0)