Towards a Dynamic Decomposition of CSPs with Separators of Bounded Size | SpringerLink
Skip to main content

Towards a Dynamic Decomposition of CSPs with Separators of Bounded Size

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9892))

Abstract

In this paper, we address two key aspects of solving methods based on tree-decomposition. First, we propose an algorithm computing decompositions that allows to bound the size of separators, which is a crucial parameter to limit the space complexity, and thus the feasibility of such methods. Moreover, we show how it is possible to dynamically modify the considered decomposition during the search. This dynamic modification can offer more freedom to the variable ordering heuristics. This also allows to better use the information gained during the search while controlling the size of the required memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The 2-section of a hypergraph (XC) is the graph \((X,C')\) where \(C'=\{ \{x,y\} | \exists c \in C, \{x,y\} \subseteq c\}\) [14].

  2. 2.

    For any \(Y \subseteq X\), the subgraph G[Y] of \(G=(X,C)\) induced by Y is the graph \((Y,C_Y)\) where \(C_Y = \{\{x,y\}\in C | x,y \in Y\}\).

  3. 3.

    A structural good (resp. nogood) of \(E_i\) w.r.t. \(E_j\) (with \(E_j\) a child of \(E_i\)) is a consistent assignment of \(E_i \cap E_j\) which can (resp. cannot) be consistently extended on \(Desc(E_j)\) [19].

  4. 4.

    Given a CSP \(P=(X,D,C)\) and a sequence of decisions \(\varSigma \), \(\varDelta \) is a nogood of P if \(P_{|\varDelta }\) has no solution where \(P_{|\varDelta }\) is the CSP \((X,D',C)\) with \(D'=(d'_{x_1},\ldots ,d'_{x_n})\) and for each positive decision \(x_i = v_i\), \(d'_{x_i} =\{v_i\}\) and for each negative decision \(x_i \ne v_i\), \(d'_{x_i} = d_{x_i} \backslash \{v_i\}\). If \(x_i\) does not appear in \(\varDelta \) then \(d'_{x_i} = d_{x_i}\) [23].

  5. 5.

    See http://www.cril.univ-artois.fr/CPAI08.

References

  1. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting tree decomposition and soft local consistency in weighted CSP. In Proceedings of AAAI, pp. 22–27 (2006)

    Google Scholar 

  2. Rose, D.J.: A graph theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Graph Theory and Computing, pp. 183–217. Academic Press (1972)

    Google Scholar 

  3. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco (2003)

    MATH  Google Scholar 

  4. Allouche, D., de Givry, S., Schiex, T.: Towards parallel non serial dynamic programming for solving hard weighted CSP. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 53–60. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Jégou, P., Kanso, H., Terrioux, C.: An algorithmic framework for decomposing constraint networks. In: Proceedings of ICTAI, pp. 1–8 (2015)

    Google Scholar 

  6. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of ECAI, pp. 146–150 (2004)

    Google Scholar 

  7. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Jégou, P., Ndiaye, S.N., Terrioux, C.: Dynamic management of heuristics for solving structured CSPs. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 364–378. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Jégou, P., Terrioux, C.: Combining restarts, nogoods and decompositions for solving CSPs. In: Proceedings of ECAI, pp. 465–470 (2014)

    Google Scholar 

  11. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, New York (2006)

    MATH  Google Scholar 

  12. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artif. Intell. 124, 243–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Robertson, N., Seymour, P.D.: Graph minors II: algorithmic aspects of treewidth. Algorithms 7, 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berge, C.: Graphs and Hypergraphs. Elsevier, New York (1973)

    MATH  Google Scholar 

  15. Cabon, C., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency. Constraints 4, 79–89 (1999)

    Article  MATH  Google Scholar 

  16. Arnborg, S., Corneil, D., Proskuroswki, A.: Complexity of finding embeddings in a k-tree. SIAM J. Disc. Math. 8, 277–284 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jégou, P., Ndiaye, S.N., Terrioux, C.: Computing and exploiting tree-decompositions for solving constraint networks. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 777–781. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Jégou, P., Terrioux, C.: Tree-decompositions with connected clusters for solving constraint networks. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 407–423. Springer, Heidelberg (2014)

    Google Scholar 

  19. Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint networks. Artif. Intell. 146, 43–75 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, W., van Beek, P.: Guiding Real-World SAT solving with dynamic hypergraph separator decomposition. In: Proceedings of ICTAI, pp. 542–548 (2004)

    Google Scholar 

  21. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Sabin, D., Freuder, E.: Contradicting conventional wisdom in constraint satisfaction. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 125–129. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  23. Lecoutre, C., Saïs, L., Tabary, S., Vidal, V.: Recording and minimizing nogoods from restarts. JSAT 1(3–4), 147–167 (2007)

    MATH  Google Scholar 

  24. Lecoutre, C., Likitvivatanavong, C., Shannon, S., Yap, R., Zhang, Y.: Maintaining arc consistency with multiple residues. Constraint Program. Lett. 2, 3–19 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Terrioux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jégou, P., Kanso, H., Terrioux, C. (2016). Towards a Dynamic Decomposition of CSPs with Separators of Bounded Size. In: Rueher, M. (eds) Principles and Practice of Constraint Programming. CP 2016. Lecture Notes in Computer Science(), vol 9892. Springer, Cham. https://doi.org/10.1007/978-3-319-44953-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44953-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44952-4

  • Online ISBN: 978-3-319-44953-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics