Abstract
This paper deals with the k-dissimilar vehicle routing problem in which a set of k dissimilar alternatives for a Capacitated Vehicle Routing Problem (CVRP) has to be determined for a single instance. The tradeoff between minimizing the longest routing alternative and maximizing the minimum dissimilarity between two routing alternatives is investigated. Since short vehicle routings tend to be similar to each other, a conflict of objectives arises. The developed heuristic approach approximates the Pareto set with respect to this tradeoff using a dissimilarity metric based on a grid. The method is tested on benchmark instances of the CVRP and findings are reported.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akgün, V., Erkut, E., Batta, R.: On finding dissimilar paths. Eur. J. Oper. Res. 121(2), 232–246 (2000)
Bock, F.: An algorithm for solving ‘Traveling Salesman’ and related network optimization problems. Technical report, 14th National Meeting of the Operations Research Society of America (ORSA), St Louis (1958)
Christofides, N.: Combinatorial optimization. Wiley, Chichester and New York (1979)
Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)
Croes, G.A.: A method for solving traveling salesman problems. Oper. Res. 6, 791–812 (1958)
Dell’Olmo, P., Gentili, M., Scozzari, A.: On finding dissimilar Pareto-optimal paths. Eur. J. Oper. Res. 162(1), 70–82 (2005)
Geiger, M.J.: Fast approximation heuristics for multi-objective vehicle routing problems. In: Chio, C., et al. (eds.) EvoApplications 2010, Part II. LNCS, vol. 6025, pp. 441–450. Springer, Heidelberg (2010)
Glover, F.: Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discrete Appl. Math. 65(1–3), 223–253 (1996)
Johnson, P., Joy, D., Clarke, D.: HIGHWAY 3.01, an enhancement routing model: program, description, methodology and revised user’s manual. Technical report, Oak Ridge National Laboratories, Washington, D.C. (1992)
Kuby, M., Zhongyi, X., Xiaodong, X.: A minimax method for finding the k best “differentiated” paths. Geogr. Anal. 29(4), 298–313 (1997)
Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(3), 345–358 (1992)
Lombard, K., Church, R.L.: The gateway shortest path problem: generating alternative routes for a corridor location problem. Geogr. Syst. 1, 25–45 (1993)
Martí, R., González Velarde, J.L., Duarte, A.: Heuristics for the bi-objective path dissimilarity problem. Comput. Oper. Res. 36(11), 2905–2912 (2009)
Ngueveu, S.U., Prins, C., Wolfler Calvo, R.: A hybrid tabu search for the m-peripatetic vehicle routing problem. In: Maniezzo, V., Stützle, T., Voß, S. (eds.) Matheuristics. Annals of Information Systems, vol. 10, pp. 253–266. Springer, Boston (2010)
Savelsbergh, M.W.P.: The vehicle routing problem with time windows: minimizing route duration. INFORMS J. Comput. 4, 146–154 (1992)
Sörensen, K.: Route stability in vehicle routing decisions: a bi-objective approach using metaheuristics. CEJOR 14(2), 193–207 (2006)
Suurballe, J.W.: Disjoint paths in a network. Networks 4(2), 125–145 (1974)
Talarico, L., Sörensen, K., Springael, J.: The k-dissimilar vehicle routing problem. Eur. J. Oper. Res. 244(1), 129–140 (2015)
Yen, J.Y.: Finding the k shortest loopless paths in a network. Manage. Sci. 17(11), 712–716 (1971)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Zajac, S. (2016). The Bi-Objective k-Dissimilar Vehicle Routing Problem. In: Paias, A., Ruthmair, M., Voß, S. (eds) Computational Logistics. ICCL 2016. Lecture Notes in Computer Science(), vol 9855. Springer, Cham. https://doi.org/10.1007/978-3-319-44896-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-44896-1_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44895-4
Online ISBN: 978-3-319-44896-1
eBook Packages: Computer ScienceComputer Science (R0)