Training Bidirectional Recurrent Neural Network Architectures with the Scaled Conjugate Gradient Algorithm | SpringerLink
Skip to main content

Training Bidirectional Recurrent Neural Network Architectures with the Scaled Conjugate Gradient Algorithm

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2016 (ICANN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9886))

Included in the following conference series:

  • 2744 Accesses

Abstract

Predictions on sequential data, when both the upstream and downstream information is important, is a difficult and challenging task. The Bidirectional Recurrent Neural Network (BRNN) architecture has been designed to deal with this class of problems. In this paper, we present the development and implementation of the Scaled Conjugate Gradient (SCG) learning algorithm for BRNN architectures. The model has been tested on the Protein Secondary Structure Prediction (PSSP) and Transmembrane Protein Topology Prediction problems (TMPTP). Our method currently achieves preliminary results close to 73 % correct predictions for the PSSP problem and close to 79 % for the TMPTP problem, which are expected to increase with larger datasets, external rules, ensemble methods and filtering techniques. Importantly, the SCG algorithm is training the BRNN architecture approximately 3 times faster than the Backpropagation Through Time (BPTT) algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schuster, M., Paliwal, K.K.: IEEE Trans. Signal Proces. 45, 2673–2681 (1997)

    Article  Google Scholar 

  2. Dietterich, T.G.: Machine learning for sequential data: a review. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SSPR&SPR 2002. LNCS, vol. 2396, pp. 15–30. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Elman, J.L.: Cogn. Sci. 14, 179–211 (1990)

    Article  Google Scholar 

  4. Werbos, P.J.: Proc. IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

  5. Frasconi, P., Gori, M., Sperduti, A.: IEEE Trans. Neural Netw. 9, 768–786 (1998)

    Article  Google Scholar 

  6. Møller, M.F.: Neural Netw. 6, 525–533 (1993)

    Article  Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  8. Baldi, P., Brunak, S., Frasconi, P., Soda, G., Pollastri, G.: Bioinformatics 15, 937–946 (1999)

    Article  Google Scholar 

  9. Kountouris, P., Agathocleous, M., Promponas, V., Christodoulou, G., Hadjicostas, S., Vassiliades, V., Christodoulou, C.: IEEE ACM Trans. Comput. Biol. Bioinform. 9, 731–739 (2012)

    Article  Google Scholar 

  10. Agathocleous, M., Christodoulou, G., Promponas, V., Christodoulou, C., Vassiliades, V., Antoniou, A.: Protein secondary structure prediction with Bidirectional recurrent neural nets: can weight updating for each residue enhance performance? In: Papadopoulos, H., Andreou, A.S., Bramer, M. (eds.) AIAI 2010. IFIP AICT, vol. 339, pp. 128–137. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Nugent, T., Jones, D.T.: BMC Bioinf. 10, 159 (2009)

    Article  Google Scholar 

  12. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, A., Zhang, Z., Miller, W., Lipman, D.J.: Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  13. Cuff, J.A., Barton, G.J.: Proteins 34, 508–519 (1999)

    Article  Google Scholar 

  14. Richards, F., Kundrot, C.: Proteins 3, 71–84 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Christodoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Agathocleous, M., Christodoulou, C., Promponas, V., Kountouris, P., Vassiliades, V. (2016). Training Bidirectional Recurrent Neural Network Architectures with the Scaled Conjugate Gradient Algorithm. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9886. Springer, Cham. https://doi.org/10.1007/978-3-319-44778-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44778-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44777-3

  • Online ISBN: 978-3-319-44778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics