Abstract
This study aims to apply the Durbin-Willshaw elastic net using parallel algorithms in order to solve the Traveling Salesman Problem (TSP) through a Beowulf cluster architecture for High-Performance Computing. The solutions for the TSP for the different number of cities are achieved by the minimization of the internal energy and by the maximization of the entropy in the information system. In this way, approximate solutions to the TSP can be determined. This work proposes a framework to implement a parallel algorithm to the Beowulf cluster. In order to find solutions for the TSP, we worked with 5000 cities with a net of 12500 nodes up to 10000 cities with 25000 nodes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aho, A., Hopcroft, J., Ullman, J.: Data Structures and Algorithms. Addison-Wesley, Reading (1983)
Lawler, E.L., Lenstra, J.K., Rinnoy Kan, A.G., Shmoys, D.B. (eds.): The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, New York (1990)
Johnson, D., Papadimitriu, C.: Computational complexity. The traveling salesman problem, pp. 37–85 (1985)
Gorbunov, S., Kisel, I.: Elastic net for stand-alone RICH ring finding. Nucl. Instr. Meth. Phys. Res. Sect. A 559(1), 139–142 (2006)
Osorio, R., Parada, V.: Un estudio comparativo de métodos basados en redes neuronales para resolver el problema del vendedor viajero. Memoria. USACH, Chile (1998)
Durbin, R., Szeliski, R.: Yuille: an analysis of the elastic net approach to the traveling salesman problem. Neural Comput. 1, 348–358 (1989)
Durbin, R., Willshaw, D.: An analogue approach to the traveling salesman problem using an elastic net method. Nature 326, 689–691 (1987)
Basse, S.: Algoritmos computacionales, computación y diseño, 3rd edn. Addison-Wesley, Mexico (2002)
Ball, K., Erman, B., Dill, K.: The elastic net algorithm and protein structure prediction. J. Comput. Chem. 23(1), 77–83 (2002)
Lévano, M., Nowak, H.: New aspects of the elastic net algorithm for cluster analysis. In: Palmer-Brown, D., Draganova, C., Pimenidis, E., Mouratidis, H. (eds.) EANN 2009. CCIS, vol. 43, pp. 281–290. Springer, Heidelberg (2009)
Yuille, A.: Neural Comput. 2(1) (1990)
Yuille, A.L., Kosowsky, J.J.: Neural Comput. 6, 341 (1994)
Stolorz P.: In: Moody, J.E., Hanson, S.J., Lippmann, R.P. (eds.) Advances in Neural Information Processing Systems, vol. 4 pp. 1026–1032. Morgan Kaufmann, San Mateo (1992)
Bai, H., OuYang, D., Li, X., He, L., Yu, H.: MAX-MIN, ant system on GPU with CUDA. In: Proceedings of the Fourth International Conference on Innovative Computing, Information and Control, pp. 801–804 (2009)
Cecilia, J.M., García, J.M., Nisbet, A., Amos, M., Ujaldón, M.: Enhancing data parallelism for ant colony optimization on GPUs. J. Parallel Distrib. Comput. 73(1), 42–51 (2013)
Fujimoto, N., Tsutsui, S.: A highly-parallel TSP solver for a GPU computing platform. In: Proceedings of the Seventh International Conference on Numerical Methods and Applications, pp. 264–271 (2010)
O’Neil, M.A.: Rethinking the parallelization of random - restart hill climbing a case study in optimizing a 2-opt TSP solver for GPU execution. In: GPGPU 2015. San Francisco, CA, USA (2015)
O’Neil, M.A.: A parallel GPU version of the traveling salesman problem. San Francisco, CA, USA (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Lévano, M., Albornoz, A. (2016). Elastic Net Application: Case Study to Find Solutions for the TSP in a Beowulf Cluster Architecture. In: Jayne, C., Iliadis, L. (eds) Engineering Applications of Neural Networks. EANN 2016. Communications in Computer and Information Science, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-319-44188-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-44188-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44187-0
Online ISBN: 978-3-319-44188-7
eBook Packages: Computer ScienceComputer Science (R0)