Spin-Coupling Diagrams and Incidence Geometry: A Note on Combinatorial and Quantum-Computational Aspects | SpringerLink
Skip to main content

Spin-Coupling Diagrams and Incidence Geometry: A Note on Combinatorial and Quantum-Computational Aspects

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2016 (ICCSA 2016)

Abstract

This paper continues previous work on quantum mechanical angular momentum theory and its applications. Relationships with projective geometry provide insight on various areas of physics and computational science. The seven-spin network previously introduced and the associate diagrams are contrasted to those of the Fano plane and its intriguing missing triad is discussed graphically. The two graphs are suggested as combinatorial and finite-geometrical “abacus” for quantum information applications, specifically for either (i)- a fermion-boson protocol, the hardware being typically a magnetic moiety distinguishing odd and even spins, or (ii)- a quantum-classical protocol, the hardware being materials (arguably molecular radicals) with both large and small angular momentum states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aquilanti, V., Bitencourt, A.P., da Ferreira, S.C., Marzuoli, A., Ragni, M.: Quantum and Semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity. Phys. Scr. 78, 58103 (2008)

    Article  MATH  Google Scholar 

  2. Anderson, R., Aquilanti, V., Ferreira, C.S.: Exact computation and large angular momentum asymptotics of 3nj symbols: semiclassical disentangling of spin-networks. J. Chem. Phys. 129, 161101 (2008)

    Article  Google Scholar 

  3. Aquilanti, V., Bitencourt, A.P., da Ferreira, S.C., Marzuoli, A., Ragni, M.: Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications. Theo. Chem. Acc. 123, 237–247 (2009)

    Article  Google Scholar 

  4. Anderson, R.W., Aquilanti, V., Marzuoli, A.: 3nj morphogenesis and semiclassical disentangling. J. Phys. Chem. A 113, 15106–15117 (2009)

    Article  Google Scholar 

  5. Ragni, M., Bitencourt, A., da Ferreira, S.C., Aquilanti, V., Anderson, R.W., Little-john, R.: Exact computation and asymptotic approximation of 6\(j\) symbols. Illustration of their semiclassical limits. Int. J. Quantum Chem. 110, 731–742 (2010)

    Article  Google Scholar 

  6. Bitencourt, A.C.P., Marzuoli, A., Ragni, M., Anderson, R.W., Aquilanti, V.: Exact and asymptotic computations of elementary spin networks: classification of the quantum–classical boundaries. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333, pp. 723–737. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Aquilanti, V., Marinelli, D., Marzuoli, A.: Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials. J. Phys. A: Math. Theor. 46, 175303 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Anderson, R.W., Aquilanti, V., Bitencourt, A.C.P., Marinelli, D., Ragni, M.: The screen representation of spin networks: 2D recurrence, eigenvalue equation for 6j symbols, geometric interpretation and hamiltonian dynamics. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part II. LNCS, vol. 7972, pp. 46–59. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Ragni, M., Littlejohn, R.G., Bitencourt, A.C.P., Aquilanti, V., Anderson, R.W.: The screen representation of spin networks: images of 6j symbols and semiclassical features. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part II. LNCS, vol. 7972, pp. 60–72. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Aquilanti, V., Marinelli, D., Marzuoli, A.: Symmetric coupling of angular momenta, quadratic algebras and discrete polynomials. J. Phys. Conf. Ser. 482, 012001 (2014)

    Article  Google Scholar 

  11. Marinelli, D., Marzuoli, A., Aquilanti, V., Anderson, R.W., Bitencourt, A.C.P., Ragni, M.: Symmetric angular momentum coupling, the quantum volume operator and the 7-spin network: a computational perspective. In: Murgante, B., et al. (eds.) ICCSA 2014, Part I. LNCS, vol. 8579, pp. 508–521. Springer, Heidelberg (2014)

    Google Scholar 

  12. Bitencourt, A.C.P., Ragni, M., Littlejohn, R.G., Anderson, R., Aquilanti, V.: The screen representation of vector coupling coefficients or Wigner 3j symbols: exact computation and illustration of the asymptotic behavior. In: Murgante, B., et al. (eds.) ICCSA 2014, Part I. LNCS, vol. 8579, pp. 468–481. Springer, Heidelberg (2014)

    Google Scholar 

  13. Aquilanti, V., Haggard, H., Hedeman, A., Jeevanjee, N., Littlejohn, R.: Semiclassical mechanics of the wigner 6\(j\)-symbol. J. Phys. A. 45, 065209 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Aquilanti, V., Coletti, C.: 3nj-symbols and harmonic superposition coefficients: an icosahedral abacus. Chem. Phys. Lett. 344, 601–611 (2001)

    Article  Google Scholar 

  15. Biedenharn, L.C., Louck, J.D.: The Racah-Wigner Algebra in Quantum Theory. Encyclopedia of Mathematics and its Applications, 1st edn, pp. 353–369. Cambridge University Press, Cambridge (1981). Chapter 5.8

    MATH  Google Scholar 

  16. Anderson, R.W., Aquilanti, V.: The discrete representation correspondence between quantum and classical spatial distributions of angular momentum vectors. J. Chem. Phys. 124, 214104 (2006)

    Article  Google Scholar 

  17. Fano, U., Racah, G.: Irreducible Tensorial Sets. Academic Press, New York (1959)

    Google Scholar 

  18. de Robinson, B.G.: Group representations and geometry. J. Math. Phys. 11(12), 3428–3432 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Biedenharn, L.C., Louck, J.D.: The racah-wigner algebra in quantum theory. In: Rota, G.C. (ed.) Encyclopedia of Mathematics and its Applications. Wesley, Reading, MA (1981)

    Google Scholar 

  20. Labarthe, J.-J.: The hidden angular momenta for the coupling-recoupling coefficients of SU(2). J. Phys. A. 33, 763 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Aquilanti, V., Marzuoli, A.: Desargues Spin Networks and Their Regge-Regularized Geometric Realization. To be published

    Google Scholar 

  22. Santos, R.F., Bitencourt, A.C.P., Ragni, M., Prudente, F.V., Coletti, C., Marzuoli, A., Aquilanti, V.: Addition of Four Angular Momenta and Alternative 9\(j\) Symbols: Coupling Diagrams and the Ten-Spin Networks. To be published

    Google Scholar 

  23. Rau, A.R.P.: Mapping two-qubit operators onto projective geometries. Phys. Rev. A. 79, 42323 (2009)

    Article  MathSciNet  Google Scholar 

  24. Rau, A.R.P.: Algebraic characterization of X-states in quantum information. J. Phys. A. 42, 412002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Coxeter, H.S.M.: Projective Geometry. Springer-Verlag, Heidelberg (1974)

    Book  MATH  Google Scholar 

  26. Ponzano, G., Regge, T.: Semiclassical Limit of Racah Coefficients in Spectroscopy and Group Theoretical Methods in Physics, F. Block (1968)

    Google Scholar 

  27. Penrose, R.: The Road to Reality: a Complete Guide to the Laws of the Universe. Randorn House Group, London (2004)

    MATH  Google Scholar 

  28. Edmonds, A.: Angular Momentum in Quantum Mechanics. Princeton University Press, Princeton, New Jersey (1960)

    MATH  Google Scholar 

  29. Yutsis, A., Levinson, I., Vanagas, V.: Mathematical Apparatus of the Theory of Angular Momentum, Israel Program for Scientific Translation (1962)

    Google Scholar 

  30. Varshalovich, D., Moskalev, A., Khersonskii, V.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)

    Book  Google Scholar 

  31. Racah, G.: Theory of Complex Spectra. II. Phys. Review. 63, 438–462 (1942)

    Article  Google Scholar 

  32. Wigner, E.: Group Theory: And its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, New York (1959)

    MATH  Google Scholar 

  33. Judd, B.: Angular-momentum theory and projective geometry. Found. Phys. 13, 51–59 (1983)

    Article  MathSciNet  Google Scholar 

  34. Hilbert, D., Cohn-Vossen, S.: Anschauliche Geometrie. Published in English under the title Geometry and the Imagination. AMS Chelsea, New York (1952)

    MATH  Google Scholar 

  35. Sawyer, W.W.: Prelude to Mathematics. Penguin, London (1955)

    Google Scholar 

  36. Hall, M.: Projective planes. Trans. Amer. Math. Soc. 54, 229–277 (1943)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Manuela Arruda is grateful to Brazilian CNPq for a post doctoral fellowship to the Perugia University. Vincenzo Aquilanti thanks Brazilian Capes for a Special Visiting Professorship at the Bahia Federal University, and Roger Anderson (Santa Cruz, California), Ana Carla Bitencourt and Mirco Ragni (Feira de Santana, Bahia, Brazil), Robert Littlejohn (Berkeley, California), Cecilia Coletti (Chieti, Italy), Annalisa Marzuoli (Pavia, Italy) and Frederico Prudente (Salvador, Bahia, Brazil) for inspiring and productive collaborations over the years. Vincenzo Aquilanti is grateful to the support of the Italian MIUR through the SIR 2014 Grant RBSI14U3VF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela S. Arruda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Arruda, M.S., Santos, R.F., Marinelli, D., Aquilanti, V. (2016). Spin-Coupling Diagrams and Incidence Geometry: A Note on Combinatorial and Quantum-Computational Aspects. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9786. Springer, Cham. https://doi.org/10.1007/978-3-319-42085-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42085-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42084-4

  • Online ISBN: 978-3-319-42085-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics