Simulation of Methane Production from Carbon Dioxide on a Collaborative Research Infrastructure | SpringerLink
Skip to main content

Simulation of Methane Production from Carbon Dioxide on a Collaborative Research Infrastructure

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2016 (ICCSA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9786))

Included in the following conference series:

Abstract

We have implemented the numerical simulation of the kinetics of the Ni-catalyzed H\(_2\) + CO\(_2\) process to assist the development of a prototype experimental apparatus producing methane. To this end the simulation program has been ported onto the segment of the distributed platform available to the Virtual Organization COMPCHEM as part of a set of use cases gathered to the end of establishing a European Research Infrastructure. The model adopted, the structure of the software and its parallel reorganization are discussed by taking as a reference the present working conditions of the apparatus in its location at the University of Perugia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Capriccioli, A.: Report on PROGEO progress. VIRT&L-COMM. 8, 1–2 (2015)

    Google Scholar 

  2. EGI Virtual Organisations definition. http://www.egi.eu/community/vos/. Accessed 30 Mar 2016

  3. EGI Virtual Research Communities definition. http://www.egi.eu/community/vos/vrcs. Accessed 30 Mar 2016

  4. EGEE Main website. http://cern.ch/egee. Accessed 30 Mar 2016

  5. EGI Main website. http://www.egi.eu. Accessed 30 Mar 2016

  6. Laganá, A., Riganelli, A., Gervasi, O.: On the structuring of the computational chemistry virtual organization COMPCHEM. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 665–674. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. VT Towards a CMMST VRC definition. https://wiki.egi.eu/wiki/Towards_a_CMMST_VRC

  8. Sumo-Chem, INFRAIA-02-2017, Proposal number: 731010–1

    Google Scholar 

  9. te Velde, G., Bickelhaupt, F.M., Baerends, E.J., Fonseca Guerra, C., van Gisbergen, S.J.A., Snijders, J.G., Ziegler, T.: Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001)

    Article  Google Scholar 

  10. Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., Cimiraglia, R., Coriani, S., Dahle, P., Dalskov, E.K., Ekström, U., Enevoldsen, T., Eriksen, J.J., Ettenhuber, P., Fernández, B., Ferrighi, L., Fliegl, H., Frediani, L., Hald, K., Halkier, A., Hättig, C., Heiberg, H., Helgaker, T., Hennum, A.C., Hettema, H., Hjertenæs, E., Høst, S., Høyvik, I.M., Iozzi, M.F., Jansik, B., Jensen, H.J.Aa., Jonsson, D., Jørgensen, P., Kauczor, J., Kirpekar, S., Kjærgaard, T., Klopper, W., Knecht, S., Kobayashi, R., Koch, H., Kongsted, J., Krapp, A., Kristensen, K., Ligabue, A., Lutnæs, O.B., Melo, J.I., Mikkelsen, K.V., Myhre, R.H., Neiss, C., Nielsen, C.B., Norman, P., Olsen, J., Olsen, J.M.H., Osted, A., Packer, M.J., Pawlowski, F., Pedersen, T.B., Provasi, P.F., Reine, S., Rinkevicius, Z., Ruden, T.A., Ruud, K., Rybkin, K., Salek, P., Samson, C.C.M., de Merás, A.S., Saue, T., Sauer, S.P.A., Schimmelpfennig, B., Sneskov, K., Steindal, A.H., Sylvester-Hvid, K.O.P., Taylor, R., Teale, A.M., Tellgren, E.I., Tew, D.P., Thorvaldsen, A.J., Thøgersen, L., Vahtras, O., Watson, M.A., Wilson, D.J.D., Ziolkowski, M., Ågren, H.: The dalton quantum chemistry program system. WIREs Comput. Mol. Sci. 4, 269–284 (2014)

    Google Scholar 

  11. Beck, M.H., Jäckle, A., Worth, G.A., Meyer, H.D.: The multi-configuration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wave packets. Phys. Rep. 324, 1–105 (2000)

    Article  Google Scholar 

  12. Valiev, M., Bylaska, E.J., Govind, N., Kowalski, K., Straatsma, T.P., Van Dam, H.J.J., Wang, D., Nieplocha, J., Apr, E., Windus, T.L., De Jong, W.A.: NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010)

    Article  MATH  Google Scholar 

  13. Werner, H., Knowles, P.J., Knizia, G., Manby, F.R., Schutz, M.: Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 242–253 (2011)

    Article  Google Scholar 

  14. Karlström, G., Lindh, R., Malmqvist, P.Å., Roos, B.O., Ryde, U., Veryazov, V., Widmark, P.-O., Cossi, M., Schimmelpfennig, B., Neogrády, P., Seijo, L.: MOLCAS: a program package for computational chemistry. Comp. Mater. Sci. 28, 222–239 (2003)

    Article  Google Scholar 

  15. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, F., Foresman, J.B., Ortiz, J. V., Cioslowski, J., Fox, D.: J. Gaussian Inc., Wallingford CT (2009)

    Google Scholar 

  16. Skouteris, D., Castillo, J.F., Manolopulos, D.E.: Abc: a quantum reactive scattering program. Comp. Phys. Comm. 133, 128–135 (2000)

    Article  MATH  Google Scholar 

  17. Alexander, M.H., Manolopoulos, D.E.: A stable linear reference potential algorithm for solution of the quantum closecoupled equations in molecular scattering theory. J. Chem. Phys. 86, 2044–2050 (1987)

    Article  Google Scholar 

  18. Hase, W.L., Duchovic, R.J., Hu, X., Komornicki, A., Lim, K.F., Lu, D.-H., Peslherbe, G.H., Swamy, K.N., Vande Linde, S.R., Varandas, A.J.C., Wang, H., Wolf, R.J.: VENUS96: a general chemical dynamics computer program. QCPE Bull. 16, 43 (1996)

    Google Scholar 

  19. Inhouse Program

    Google Scholar 

  20. Costantini, A., Gervasi, O., Manuali, C., Faginas Lago, N., Rampino, S., Laganà, A.: COMPCHEM: progress towards GEMS a grid empowered molecular simulator and beyond. J. Grid Comp. 8(4), 571–586 (2010)

    Article  Google Scholar 

  21. Laganà, A., Garcia, E., Paladini, A., Casavecchia, P., Balucani, N.: The last mile of molecular reaction dynamics virtual experiments: the case of the OH (N=1-10) + CO (j=0-3) → H + CO\(_2\) reaction. Faraday Discuss. 157, 415–436 (2012)

    Article  Google Scholar 

  22. Yang, M., Zhang, D.H., Collins, M.A., Lee, S.-Y.: Ab initio potential-energy surfaces for the reactions OH + H2 & ↔ H2O + H. J. Chem. Phys. 115, 174 (2001)

    Article  Google Scholar 

  23. Chen, J., Xu, X., Xu, X., Xhang, D.H.: A global potential energy surface for the H2 + OH ↔ H2O + H reaction using neural networks. J. Chem. Phys. 138, 154301 (2013)

    Article  Google Scholar 

  24. Medvedev, D.M., Harding, L.B., Gray, S.K.: Methyl radical: ab initio global potential surface, vibrational levels and partition function. Mol. Phys. 104, 73 (2006)

    Article  Google Scholar 

  25. Blaylock, D., Ogura, T., Green, W., Beran, G.: Computational investigation of thermochemistry and kinetics of steam methane reforming on Ni(111) under realistic conditions. J. Phys. Chem. C. 113(12), 4898–4908 (2009)

    Article  Google Scholar 

  26. Ren, J., Guo, H., Yang, J., Qin, Z., Lin, J., Li, Z.: Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory. Appl. Surf. Sci. 351, 504–516 (2015)

    Article  Google Scholar 

  27. Catapan, R., Oliveira, A., Chen, Y., Vlachos, D.: DFT study of the watergas shift reaction and coke formation on Ni(111) and Ni(211) surfaces. J. Phys. Chem. C. 116, 20281–20291 (2012)

    Article  Google Scholar 

  28. Stamatakis, M., Vlachos, D.G.: A graph-theoretical kinetic monte carlo framework for on-lattice chemical kinetics. J. Chem. Phys. 134(21), 214115 (2011)

    Article  Google Scholar 

  29. Nielsen, J., d’Avezac, M., Hetherington, J., Stamatakis, M.: Parallel kinetic monte carlo simulation framework incorporating accurate models of adsorbate lateral interactions. J. Chem. Phys 139(22), 224706 (2013)

    Article  Google Scholar 

  30. Mller-Krumbhaar, H., Binder, K.: Dynamic properties of the Monte Carlo method in statistical mechanics. J. Stat. Phys. 8(1), 1–24 (1973)

    Article  Google Scholar 

  31. Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17(1), 10–18 (1975)

    Article  Google Scholar 

  32. Ziff, R.M., Gulari, E., Barshad, Y.: Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56, 2553–2556 (1986)

    Article  Google Scholar 

  33. Weatherbee, G.D., Bartholomew, C.H.: Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. J. Catal. 77, 460–472 (1982)

    Article  Google Scholar 

  34. Lapidus, A.L., Gaidai, N.A., Nekrasov, N.V., Tishkova, L.A., Agafonov, Y.A., Myshenkova, T.N.: The mechanism of carbon dioxide hydrogenation on copper and nickel catalysts. Pet. Chem. 47, 75–82 (2007)

    Article  Google Scholar 

  35. Fujita, S., Terunuma, H., Kobayashi, H., Takezawa, N.: Methanation of carbon monoxide and carbon dioxide over nickel catalyst under the transient state. React. Kinet. Catal. Lett. 33, 179–184 (1987)

    Article  Google Scholar 

  36. Schild, C., Wokaun, A., Baiker, A.: On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study: Part II. Surface species on copper/zirconia catalysts: implications for methanoi synthesis selectivity. J. Mol. Catal. 63, 243–254 (1990)

    Article  Google Scholar 

  37. Martin, G.A., Primet, M., Dalmon, J.A.: Reactions of CO and CO2 onNi/SiO\(_2\) above 373 K as studied by infrared spectroscopic andmagnetic methods. J. Catal. 53, 321–330 (1978)

    Article  Google Scholar 

  38. Martí, C., Pacifici, L., Laganà, A.: Networked computing for abinitio modeling the chemical storage of alternative energy: first term report (September-November 2015). VIRT&L-COMM. 8, 3–9 (2015)

    Google Scholar 

  39. John Matthey webpage. http://www.jmprotech.com/methanation-catalysts-for-hydrogen-production-katalco. Accessed 5 May 2016

Download references

Acknowledgments

Thanks are due to the PLC SYSTEM srl and to MASTER-UP srl for making the PROGEO experimental apparatus available at the University of Perugia.

Thanks are also due to COST CMST (action D37), EGI (projects EGEE III and EGI Inspire) and the Fondazione Cassa di Risparmio of Perugia (project 2014.0253.021 scientific and technological research) and the European Joint Doctorate on TCCM project ITN-EJD-642294. Theoretical Chemistry and Computational Modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Martí .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Martí, C., Pacifici, L., Capriccioli, A., Laganà, A. (2016). Simulation of Methane Production from Carbon Dioxide on a Collaborative Research Infrastructure. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9786. Springer, Cham. https://doi.org/10.1007/978-3-319-42085-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42085-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42084-4

  • Online ISBN: 978-3-319-42085-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics