Abstract
We have implemented the numerical simulation of the kinetics of the Ni-catalyzed H\(_2\) + CO\(_2\) process to assist the development of a prototype experimental apparatus producing methane. To this end the simulation program has been ported onto the segment of the distributed platform available to the Virtual Organization COMPCHEM as part of a set of use cases gathered to the end of establishing a European Research Infrastructure. The model adopted, the structure of the software and its parallel reorganization are discussed by taking as a reference the present working conditions of the apparatus in its location at the University of Perugia.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Capriccioli, A.: Report on PROGEO progress. VIRT&L-COMM. 8, 1–2 (2015)
EGI Virtual Organisations definition. http://www.egi.eu/community/vos/. Accessed 30 Mar 2016
EGI Virtual Research Communities definition. http://www.egi.eu/community/vos/vrcs. Accessed 30 Mar 2016
EGEE Main website. http://cern.ch/egee. Accessed 30 Mar 2016
EGI Main website. http://www.egi.eu. Accessed 30 Mar 2016
Laganá, A., Riganelli, A., Gervasi, O.: On the structuring of the computational chemistry virtual organization COMPCHEM. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 665–674. Springer, Heidelberg (2006)
VT Towards a CMMST VRC definition. https://wiki.egi.eu/wiki/Towards_a_CMMST_VRC
Sumo-Chem, INFRAIA-02-2017, Proposal number: 731010–1
te Velde, G., Bickelhaupt, F.M., Baerends, E.J., Fonseca Guerra, C., van Gisbergen, S.J.A., Snijders, J.G., Ziegler, T.: Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001)
Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., Cimiraglia, R., Coriani, S., Dahle, P., Dalskov, E.K., Ekström, U., Enevoldsen, T., Eriksen, J.J., Ettenhuber, P., Fernández, B., Ferrighi, L., Fliegl, H., Frediani, L., Hald, K., Halkier, A., Hättig, C., Heiberg, H., Helgaker, T., Hennum, A.C., Hettema, H., Hjertenæs, E., Høst, S., Høyvik, I.M., Iozzi, M.F., Jansik, B., Jensen, H.J.Aa., Jonsson, D., Jørgensen, P., Kauczor, J., Kirpekar, S., Kjærgaard, T., Klopper, W., Knecht, S., Kobayashi, R., Koch, H., Kongsted, J., Krapp, A., Kristensen, K., Ligabue, A., Lutnæs, O.B., Melo, J.I., Mikkelsen, K.V., Myhre, R.H., Neiss, C., Nielsen, C.B., Norman, P., Olsen, J., Olsen, J.M.H., Osted, A., Packer, M.J., Pawlowski, F., Pedersen, T.B., Provasi, P.F., Reine, S., Rinkevicius, Z., Ruden, T.A., Ruud, K., Rybkin, K., Salek, P., Samson, C.C.M., de Merás, A.S., Saue, T., Sauer, S.P.A., Schimmelpfennig, B., Sneskov, K., Steindal, A.H., Sylvester-Hvid, K.O.P., Taylor, R., Teale, A.M., Tellgren, E.I., Tew, D.P., Thorvaldsen, A.J., Thøgersen, L., Vahtras, O., Watson, M.A., Wilson, D.J.D., Ziolkowski, M., Ågren, H.: The dalton quantum chemistry program system. WIREs Comput. Mol. Sci. 4, 269–284 (2014)
Beck, M.H., Jäckle, A., Worth, G.A., Meyer, H.D.: The multi-configuration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wave packets. Phys. Rep. 324, 1–105 (2000)
Valiev, M., Bylaska, E.J., Govind, N., Kowalski, K., Straatsma, T.P., Van Dam, H.J.J., Wang, D., Nieplocha, J., Apr, E., Windus, T.L., De Jong, W.A.: NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010)
Werner, H., Knowles, P.J., Knizia, G., Manby, F.R., Schutz, M.: Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 242–253 (2011)
Karlström, G., Lindh, R., Malmqvist, P.Å., Roos, B.O., Ryde, U., Veryazov, V., Widmark, P.-O., Cossi, M., Schimmelpfennig, B., Neogrády, P., Seijo, L.: MOLCAS: a program package for computational chemistry. Comp. Mater. Sci. 28, 222–239 (2003)
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, F., Foresman, J.B., Ortiz, J. V., Cioslowski, J., Fox, D.: J. Gaussian Inc., Wallingford CT (2009)
Skouteris, D., Castillo, J.F., Manolopulos, D.E.: Abc: a quantum reactive scattering program. Comp. Phys. Comm. 133, 128–135 (2000)
Alexander, M.H., Manolopoulos, D.E.: A stable linear reference potential algorithm for solution of the quantum closecoupled equations in molecular scattering theory. J. Chem. Phys. 86, 2044–2050 (1987)
Hase, W.L., Duchovic, R.J., Hu, X., Komornicki, A., Lim, K.F., Lu, D.-H., Peslherbe, G.H., Swamy, K.N., Vande Linde, S.R., Varandas, A.J.C., Wang, H., Wolf, R.J.: VENUS96: a general chemical dynamics computer program. QCPE Bull. 16, 43 (1996)
Inhouse Program
Costantini, A., Gervasi, O., Manuali, C., Faginas Lago, N., Rampino, S., Laganà, A.: COMPCHEM: progress towards GEMS a grid empowered molecular simulator and beyond. J. Grid Comp. 8(4), 571–586 (2010)
Laganà, A., Garcia, E., Paladini, A., Casavecchia, P., Balucani, N.: The last mile of molecular reaction dynamics virtual experiments: the case of the OH (N=1-10) + CO (j=0-3) → H + CO\(_2\) reaction. Faraday Discuss. 157, 415–436 (2012)
Yang, M., Zhang, D.H., Collins, M.A., Lee, S.-Y.: Ab initio potential-energy surfaces for the reactions OH + H2 & ↔ H2O + H. J. Chem. Phys. 115, 174 (2001)
Chen, J., Xu, X., Xu, X., Xhang, D.H.: A global potential energy surface for the H2 + OH ↔ H2O + H reaction using neural networks. J. Chem. Phys. 138, 154301 (2013)
Medvedev, D.M., Harding, L.B., Gray, S.K.: Methyl radical: ab initio global potential surface, vibrational levels and partition function. Mol. Phys. 104, 73 (2006)
Blaylock, D., Ogura, T., Green, W., Beran, G.: Computational investigation of thermochemistry and kinetics of steam methane reforming on Ni(111) under realistic conditions. J. Phys. Chem. C. 113(12), 4898–4908 (2009)
Ren, J., Guo, H., Yang, J., Qin, Z., Lin, J., Li, Z.: Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory. Appl. Surf. Sci. 351, 504–516 (2015)
Catapan, R., Oliveira, A., Chen, Y., Vlachos, D.: DFT study of the watergas shift reaction and coke formation on Ni(111) and Ni(211) surfaces. J. Phys. Chem. C. 116, 20281–20291 (2012)
Stamatakis, M., Vlachos, D.G.: A graph-theoretical kinetic monte carlo framework for on-lattice chemical kinetics. J. Chem. Phys. 134(21), 214115 (2011)
Nielsen, J., d’Avezac, M., Hetherington, J., Stamatakis, M.: Parallel kinetic monte carlo simulation framework incorporating accurate models of adsorbate lateral interactions. J. Chem. Phys 139(22), 224706 (2013)
Mller-Krumbhaar, H., Binder, K.: Dynamic properties of the Monte Carlo method in statistical mechanics. J. Stat. Phys. 8(1), 1–24 (1973)
Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17(1), 10–18 (1975)
Ziff, R.M., Gulari, E., Barshad, Y.: Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56, 2553–2556 (1986)
Weatherbee, G.D., Bartholomew, C.H.: Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. J. Catal. 77, 460–472 (1982)
Lapidus, A.L., Gaidai, N.A., Nekrasov, N.V., Tishkova, L.A., Agafonov, Y.A., Myshenkova, T.N.: The mechanism of carbon dioxide hydrogenation on copper and nickel catalysts. Pet. Chem. 47, 75–82 (2007)
Fujita, S., Terunuma, H., Kobayashi, H., Takezawa, N.: Methanation of carbon monoxide and carbon dioxide over nickel catalyst under the transient state. React. Kinet. Catal. Lett. 33, 179–184 (1987)
Schild, C., Wokaun, A., Baiker, A.: On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study: Part II. Surface species on copper/zirconia catalysts: implications for methanoi synthesis selectivity. J. Mol. Catal. 63, 243–254 (1990)
Martin, G.A., Primet, M., Dalmon, J.A.: Reactions of CO and CO2 onNi/SiO\(_2\) above 373 K as studied by infrared spectroscopic andmagnetic methods. J. Catal. 53, 321–330 (1978)
Martí, C., Pacifici, L., Laganà, A.: Networked computing for abinitio modeling the chemical storage of alternative energy: first term report (September-November 2015). VIRT&L-COMM. 8, 3–9 (2015)
John Matthey webpage. http://www.jmprotech.com/methanation-catalysts-for-hydrogen-production-katalco. Accessed 5 May 2016
Acknowledgments
Thanks are due to the PLC SYSTEM srl and to MASTER-UP srl for making the PROGEO experimental apparatus available at the University of Perugia.
Thanks are also due to COST CMST (action D37), EGI (projects EGEE III and EGI Inspire) and the Fondazione Cassa di Risparmio of Perugia (project 2014.0253.021 scientific and technological research) and the European Joint Doctorate on TCCM project ITN-EJD-642294. Theoretical Chemistry and Computational Modeling.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Martí, C., Pacifici, L., Capriccioli, A., Laganà, A. (2016). Simulation of Methane Production from Carbon Dioxide on a Collaborative Research Infrastructure. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9786. Springer, Cham. https://doi.org/10.1007/978-3-319-42085-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-42085-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42084-4
Online ISBN: 978-3-319-42085-1
eBook Packages: Computer ScienceComputer Science (R0)