Abstract
This chapter surveys some of the developments in the area of Mathematics that grew out of the solution of Hilbert’s Tenth Problem by Martin Davis, Hilary Putnam, Julia Robinson and Yuri Matiyasevich.
The author has been partially supported by the NSF grant DMS-1161456.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Colliot-Thélène, J.-L., Skorobogatov, A., & Swinnerton-Dyer, P. (1997). Double fibres and double covers: Paucity of rational points. Acta Arithmetica, 79, 113–135.
Cornelissen, G., Pheidas, T., & Zahidi, K. (2005). Division-ample sets and diophantine problem for rings of integers. Journal de Théorie des Nombres Bordeaux, 17, 727–735.
Cornelissen, G., & Zahidi, K. (2000). Topology of diophantine sets: Remarks on Mazur’s conjectures. In J. Denef, L. Lipshitz, T. Pheidas & J. Van Geel (Eds.), Hilbert’s tenth problem: Relations with arithmetic and algebraic geometry, Contemporary mathematics (Vol. 270, pp. 253–260). American Mathematical Society.
Davis, M. (1973). Hilbert’s tenth problem is unsolvable. American Mathematical Monthly, 80, 233–269.
Davis, M., Matiyasevich, Y., & Robinson, J. (1976). Hilbert’s tenth problem. Diophantine equations: Positive aspects of a negative solution. Proceedings of Symposium on Pure Mathematics, 28, 323– 378. American Mathematical Society.
Denef, J. (1975). Hilbert’s tenth problem for quadratic rings. Proceedings of the American Mathematical Society, 48, 214–220.
Denef, J. (1980). Diophantine sets of algebraic integers II. Transactions of American Mathematical Society, 257(1), 227–236.
Denef, J., & Lipshitz, L. (1978). Diophantine sets over some rings of algebraic integers. Journal of London Mathematical Society, 18(2), 385–391.
Denef, J., Lipshitz, L., Pheidas, T., & Van Geel, J. (Eds.). (2000). Hilbert’s tenth problem: Relations with arithmetic and algebraic geometry, Contemporary mathematics (Vol. 270). Providence, RI: American Mathematical Society. Papers from the workshop held at Ghent University, Ghent, November 2–5, 1999.
Eisenträger, K., & Everest, G. (2009). Descent on elliptic curves and Hilbert’s tenth problem. Proceedings of the American Mathematical Society, 137(6), 1951–1959.
Eisenträger, K., Everest, G., & Shlapentokh, A. (2011). Hilbert’s tenth problem and Mazur’s conjectures in complementary subrings of number fields. Mathematical Research Letters, 18(6), 1141–1162.
Eisenträger, K., Miller, R., Park, J., & Shlapentokh, A. Easy as \({\mathbb{Q}}\). Work in progress.
Ershov, Y. L. (1996). Nice locally global fields. I. Algebra i Logika, 35(4), 411–423, 497.
Everest, G., van der Poorten, A., Shparlinski, I., & Ward, T. (2003). Recurrence sequences (Vol. 104). Mathematical Surveys and Monographs Providence, RI: American Mathematical Society.
Fried, M. D., Haran, D., & Völklein, H. (1994). Real Hilbertianity and the field of totally real numbers. In Arithmetic geometry (Tempe, AZ, 1993) Contemporary Mathematics (Vol. 174, pp. 1–34). Providence, RI: American Mathematical Society.
Friedberg, R. M. (1957). Two recursively enumerable sets of incomparable degrees of unsolvability (solution of Post’s problem, 1944). Proceedings of the National Academy of Sciences U.S.A., 43, 236–238.
Fukuzaki, K. (2012). Definability of the ring of integers in some infinite algebraic extensions of the rationals. MLQ Mathematical Logic Quarterly, 58(4–5), 317–332.
Jarden, M., & Shlapentokh, A. On decidable fields. Work in progress.
Koenigsmann, J. Defining \({\mathbb{Z}}\) in \({\mathbb{Q}}\). Annals of Mathematics. To appear.
Kronecker, L. (1857). Zwei sätze über gleichungen mit ganzzahligen coefficienten. Journal für die Reine und Angewandte Mathematik, 53, 173–175.
Marker, D. (2002). Model theory: An introduction, Graduate texts in mathematics (Vol. 217). New York: Springer.
Matiyasevich, Y.V. (1993). Hilbert’s tenth problem. Foundations of computing series. Cambridge, MA: MIT Press. Translated from the 1993 Russian original by the author, With a foreword by Martin Davis.
Mazur, B. (1992). The topology of rational points. Experimental Mathematics, 1(1), 35–45.
Mazur, B. (1994). Questions of decidability and undecidability in number theory. Journal of Symbolic Logic, 59(2), 353–371.
Mazur, B. (1998). Open problems regarding rational points on curves and varieties. In A. J. Scholl & R. L. Taylor (Eds.), Galois representations in arithmetic algebraic geometry. Cambridge University Press.
Mazur, B., & Rubin, K. (2010). Ranks of twists of elliptic curves and Hilbert’s Tenth Problem. Inventiones Mathematicae, 181, 541–575.
Muchnik, A. A. (1956). On the separability of recursively enumerable sets. Doklady Akademii Nauk SSSR (N.S.), 109, 29–32.
Park, J. A universal first order formula defining the ring of integers in a number field. To appear in Math Research Letters.
Perlega, S. (2011). Additional results to a theorem of Eisenträger and Everest. Archiv der Mathematik (Basel), 97(2), 141–149.
Pheidas, T. (1988). Hilbert’s tenth problem for a class of rings of algebraic integers. Proceedings of American Mathematical Society, 104(2), 611–620.
Poonen, B. Elliptic curves whose rank does not grow and Hilbert’s Tenth Problem over the rings of integers. Private Communication.
Poonen, B. (2002). Using elliptic curves of rank one towards the undecidability of Hilbert’s Tenth Problem over rings of algebraic integers. In C. Fieker & D. Kohel (Eds.), 7 Number theory, Lecture Notes in Computer Science (Vol. 2369, pp. 33–42). Springer.
Poonen, B. (2003). Hilbert’s Tenth Problem and Mazur’s conjecture for large subrings of \({\mathbb{Q}}\). Journal of AMS, 16(4), 981–990.
Poonen, B. (2008). Undecidability in number theory. Notices of the American Mathematical Society, 55(3), 344–350.
Poonen, B. (2009). Characterizing integers among rational numbers with a universal-existential formula. American Journal of Mathematics, 131(3), 675–682.
Poonen, B., & Shlapentokh, A. (2005). Diophantine definability of infinite discrete non-archimedean sets and diophantine models for large subrings of number fields. Journal für die Reine und Angewandte Mathematik, 27–48, 2005.
Prestel, A., & Schmid, J. (1991). Decidability of the rings of real algebraic and \(p\)-adic algebraic integers. Journal für die Reine und Angewandte Mathematik, 414, 141–148.
Prestel, A. (1981). Pseudo real closed fields. In Set theory and model theory (Bonn, 1979), Lecture notes in mathematics (Vol. 872, pp. 127–156). Berlin-New York: Springer.
Robinson, J. (1949). Definability and decision problems in arithmetic. Journal of Symbolic Logic, 14, 98–114.
Robinson, J. (1959). The undecidability of algebraic fields and rings. Proceedings of the American Mathematical Society, 10, 950–957.
Robinson, J. (1962). On the decision problem for algebraic rings. In Studies in mathematical analysis and related topics (pp. 297–304). Stanford, Calif: Stanford University Press.
Robinson, R. M. (1964). The undecidability of pure transcendental extensions of real fields. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 10, 275–282.
Rogers, H. (1967). Theory of recursive functions and effective computability. New York: McGraw-Hill.
Rohrlich, D. E. (1984). On \(L\)-functions of elliptic curves and cyclotomic towers. Inventiones Mathematicae, 75(3), 409–423.
Rumely, R. (1980). Undecidability and definability for the theory of global fields. Transactions of the American Mathematical Society, 262(1), 195–217.
Rumely, R. S. (1986). Arithmetic over the ring of all algebraic integers. Journal für die Reine und Angewandte Mathematik, 368, 127–133.
Shlapentokh, A. First order definability and decidability in infinite algebraic extensions of rational numbers. arXiv:1307.0743 [math.NT].
Shlapentokh, A. (1989). Extension of Hilbert’s tenth problem to some algebraic number fields. Communications on Pure and Applied Mathematics, XLII, 939–962.
Shlapentokh, A. (1994). Diophantine classes of holomorphy rings of global fields. Journal of Algebra, 169(1), 139–175.
Shlapentokh, A. (1994). Diophantine equivalence and countable rings. Journal of Symbolic Logic, 59, 1068–1095.
Shlapentokh, A. (1994). Diophantine undecidability in some rings of algebraic numbers of totally real infinite extensions of \({\mathbb{Q}}\). Annals of Pure and Applied Logic, 68, 299–325.
Shlapentokh, A. (1997). Diophantine definability over some rings of algebraic numbers with infinite number of primes allowed in the denominator. Inventiones Mathematicae, 129, 489–507.
Shlapentokh, A. (2000). Defining integrality at prime sets of high density in number fields. Duke Mathematical Journal, 101(1), 117–134.
Shlapentokh, A. (2000). Hilbert’s tenth problem over number fields, a survey. In J. Denef, L. Lipshitz, T. Pheidas & J. Van Geel (Eds.), Hilbert’s Tenth problem: Relations with arithmetic and algebraic geometry, Contemporary mathematics (Vol. 270, pp. 107–137). American Mathematical Society.
Shlapentokh, A. (2002). On diophantine definability and decidability in large subrings of totally real number fields and their totally complex extensions of degree 2. Journal of Number Theory, 95, 227–252.
Shlapentokh, A. (2006). Hilbert’s Tenth problem: Diophantine classes and extensions to global fields. Cambridge University Press.
Shlapentokh, A. (2007). Diophantine definability and decidability in the extensions of degree 2 of totally real fields. Journal of Algebra, 313(2), 846–896.
Shlapentokh, A. (2008). Elliptic curves retaining their rank in finite extensions and Hilbert’s tenth problem for rings of algebraic numbers. Transactions of the American Mathematical Society, 360(7), 3541–3555.
Shlapentokh, A. (2009). Rings of algebraic numbers in infinite extensions of \({\mathbb{Q}}\) and elliptic curves retaining their rank. Archive for Mathematical Logic, 48(1), 77–114.
Shlapentokh, A. (2012). Elliptic curve points and Diophantine models of \({\mathbb{Z}}\) in large subrings of number fields. International Journal of Number Theory, 8(6), 1335–1365.
Silverman, J. (1986). The arithmetic of elliptic curves. New York, New York: Springer.
Tarski, T. (1986). A decision method for elementary algebra and geometry. In Collected papers, S. R. Givant & R. N. McKenzie (Eds.), Contemporary mathematicians (Vol. 3, pp. xiv+682). Basel: Birkhäuser Verlag. 1945–1957.
van den Dries, L. (1988). Elimination theory for the ring of algebraic integers. Journal für die Reine und Angewandte Mathematik, 388, 189–205.
Videla, C. (1999). On the constructible numbers. Proceedings of American Mathematical Society, 127(3), 851–860.
Videla, C. (2000). Definability of the ring of integers in pro-\(p\) extensions of number fields. Israel Journal of Mathematics, 118, 1–14.
Videla, C. R. (2000). The undecidability of cyclotomic towers. Proceedings of American Mathematical Society, 128(12), 3671–3674.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Shlapentokh, A. (2016). Extensions of Hilbert’s Tenth Problem: Definability and Decidability in Number Theory. In: Omodeo, E., Policriti, A. (eds) Martin Davis on Computability, Computational Logic, and Mathematical Foundations. Outstanding Contributions to Logic, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-41842-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-41842-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41841-4
Online ISBN: 978-3-319-41842-1
eBook Packages: Religion and PhilosophyPhilosophy and Religion (R0)