Abstract
The paper presents the history of the negative solution of Hilbert’s tenth problem , the role played in it by Martin Davis, consequent modifications of the original proof of DPRM-theorem, its improvements and applications, and a new (2010) conjecture of Martin Davis .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blum, M. (1967). A machine-independent theory of the complexity of recursive functions. Journal of the ACM, 14(2), 322–336.
Browder. (Ed.). (1976). Mathematical Developments arising from Hilbert Problems. Proceedings of Symposia in Pure Mathematics (vol. 28). American Mathematical Society.
Davis, M. (1950). Arithmetical problems and recursively enumerable predicates (abstract). Journal of Symbolic Logic, 15(1), 77–78.
Davis, M. (1950). On the theory of recursive unsolvability. PhD thesis, Princeton University.
Davis, M. (1953). Arithmetical problems and recursively enumerable predicates. Journal of Symbolic Logic, 18(1), 33–41.
Davis, M. (1958). Computability and unsolvability. New York: McGraw-Hill. Reprinted with an additional appendix, Dover 1983.
Davis, M. (1968). One equation to rule them all. Transactions of the New York Academy of Sciences. Series II, 30(6), 766–773.
Davis, M. (1971). An explicit Diophantine definition of the exponential function. Communications on Pure and Applied Mathematics, 24(2), 137–145.
Davis, M. (1972). On the number of solutions of Diophantine equations. Proceedings of the American Mathematical Society, 35(2), 552–554.
Davis, M. (1973). Speed-up theorems and Diophantine equations. In R. Rustin (Ed.), Courant computer science symposium 7: Computational complexity (pp. 87–95). New York: Algorithmics Press.
Davis, M. (2010). Representation theorems for r.e. sets and a conjecture related to Poonen’s larges subring of \(\mathbb{Q}\). Zapiski Nauchnykh Seminarov Peterburgskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova RAN (POMI), 377, 50–54. Reproduced in: Journal of Mathematical Sciences, 171(6), 728–730 (2010).
Davis, M., Matijasevich, Yu., & Robinson, J. Hilbert’s tenth problem. Diophantine equations: Positive aspects of a negative solution, pp. 323–378 in [2]. Reprinted in [51, pp. 269–324].
Davis, M., & Putnam, H. (1959). A computational proof procedure; Axioms for number theory; Research on Hilbert’s Tenth Problem. O.S.R. Report AFOSR TR59-124, U.S. Air Force.
Davis, M., Putnam, H., & Robinson, J. (1961). The decision problem for exponential Diophantine equations. Annals of Mathematics , 74(2), 425–436. Reprinted in [51].
Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I. Monatshefte für Mathematik und Physik bf 38(1), 173–198. Reprinted with English translation in: S. Feferman et al., (Eds.) (1986). Kurt Gödel. Collected Works (vol. I, pp. 144–195). Oxford University Press. English translation can also be found in: M. Davis, (Ed.) (1965). The Undecidable (pp. 4–38). Raven Press, Hewlett, New York and in: J. van Heijenoort, (Ed.) (1967). From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931 (pp. 596–616). Harvard University Press, Cambridge, Massachusetts.
Green, B., & Tao, T. (2008). The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics , 167, 481–547. doi:10.4007/annals.2008.167.481, arXiv:math.NT/0404188.
Herrman, O. (1971). A non-trivial solution of the Diophantine equation \(9(x^2+7y^2)^2 - 7(u^2 + 7v^2)^2=2\). In A. O. L. Atkin & B. J. Birch (Eds.), Computers in number theory (pp. 207–212). London: Academic Press.
Hilbert, D. (1900) Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker Kongress zu Paris 1900. Nachrichten von der Königliche Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys.Kl. 253–297. See also Hilbert, D. (1935). Gesammelte Abhandlungen (vol. 3), Berlin: Springer. (Reprinted: Chelsea, New York (1965)). English translation: Bulletin of the American Mathematical Society, 8, 437–479 (1901–1902); reprinted in: [2, pp. 1–34].
Jones, J. P. (1982). Universal Diophantine equation. Journal Symbolic Logic, 47, 549–571.
Jones, J. P., & Matijasevič, Ju V. (1982). Exponential Diophantine representation of recursively enumerable sets. In J. Stern (Ed.), Proceedings of the Herbrand Symposium: Logic Colloquium’81, Studies in Logic and the Foundations of Mathematics, 107, 159–177. Amsterdam: North Holland.
Jones, J. P., & Matijasevič, Ju V. (1982). A new representation for the symmetric binomial coefficient and its applications. Annales Sci. Mathém. du Québec, 6(1), 81–97.
Jones, J. P., & Matijasevič, Ju V. (1983). Direct translation of register machines into exponential Diophantine equations. In L. Priese (Ed.), Report on the 1st GTI-workshop (pp. 117–130). Reihe Theoretische Informatik: Universität-Gesamthochschule Paderborn.
Jones, J. P., & Matijasevič, Ju V. (1984). Register machine proof of the theorem on exponential Diophantine representation of enumerable sets. Journal Symbolic Logic, 49(3), 818–829.
Jones, J. P., & Matijasevič, Ju V. (1991). Proof of recursive unsolvability of Hilbert’s tenth problem. American Mathematical Monthly, 98(8), 689–709.
Kreisel, G. (1958). Mathematical significance of consistency proofs. Journal of Symbolic Logic, 23(2), 155–182.
Levitz, H. (1985). Decidability of some problem pertaining to base 2 exponential Diophantine equations. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 31(2), 109–115.
Mal’tsev, A. I. (1968). On some boundary questions between algebra and logic (in Russian). Trudy Mezhdunarodnogo Kongressa Matematikov (Moskva, 1966), pp. 217–231. Translated in: American Mathematical Society Translations. Series 2, Vol. 70: 31 invited addresses (8 in abstract) at the International Congress of Mathematicians in Moscow, 1966. American Mathematical Society, Providence, R.I. 1968, p. 266.
Markov, A. A. (1947). Impossibility of certain algorithms in the theory of associative systems (in Russian), Doklady Akademii Nauk SSSR, 55(7), 587–590 (1947). Translated in: Compte rendus de l’Académie des Sciences de l’U.R.S.S., 55, 583–586 (1947).
Matiyasevich, Yu. V. (1970). Enumerable sets are Diophantine (in Russian). Dokl. AN SSSR, 191(2), 278–282; Translated in: Soviet Math. Doklady, 11(2), 354–358. Correction ibid 11 (6) (1970), vi. Reprinted on pp. 269–273 in: Mathematical logic in the 20th century, G. E. Sacks, (Ed.), (2003). Singapore University Press and World Scientific Publishing Co., Singapore and River Edge, NJ.
Matiyasevich, Yu. V. (1972). Diophantine sets (in Russian). Uspekhi Matematicheskikh Nauk , 27(5), 185–222. English translation: Russian Mathematical Surveys, 27(5), 124–164 (1972).
Matiyasevich, Yu. V. (1972). Arithmetical representations of enumerable sets with a small number of quantifiers (in Russian). Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR (LOMI) , 32, 77–84. English translation: Journal of Soviet Mathematics, 6(4), 410–416 (1976).
Matiyasevich, Yu. V. (1974). Existence of noneffectivizable estimates in the theory of exponential Diophantine equations (in Russian). Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR (LOMI), 40, 77–93; Translated in: Journal of Soviet Mathematics, 8(3), 299–311 (1977)
Matiyasevich, Yu. V. (1976). A new proof of the theorem on exponential Diophantine representation of enumerable sets (in Russian). Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR (LOMI), 60, 75–92; Translated in: Journal of Soviet Mathematics, 14(5), 1475–1486 (1980)
Matiyasevich, Yu. V. (1977). Some purely mathematical results inspired by mathematical logic. Proceedings of Fifth International Congress on Logic, Methodology and Philosophy of science, London, Ontario, 1975 (pp. 121–127), Reidel, Dordrecht.
Matiyasevich, Yu. V. (1984). On investigations on some algorithmic problems in algebra and number theory. Trudy Matematicheskogo instituta im. V. A. Steklova of Academy of Sciences of the USSR, 168, 218–235. Translated in Proceedings of the Steklov Institute of Mathematics, 168, 227–252 (1986).
Matiyasevich, Yu. V. (1979). Algorithmic unsolvability of exponential Diophantine equations in three unknowns (in Russian). In A. A.Markov, & V. I.Homich (Eds), Studies in the Theory of Algorithms and Mathematical Logic, Computing Center Russian Academy Sci., Moscow, pp. 69–78; Translated in Selecta Mathematica Sovietica, 3, 223–232 (1983/1984).
Matiyasevich, Yu. V. (1993). Hilbert’s Tenth Problem (in Russian). Fizmatlit, Moscow. English translation: MIT Press, Cambridge (Massachusetts) London (1993). French translation: Le dixième Problème de Hilbert, Masson, Paris Milan Barcelone (1995). http://logic.pdmi.ras.ru/~yumat/H10Pbook.
Matiyasevich, Yu. (1994). A direct method for simulating partial recursive functions by Diophantine equations. Annals of Pure and Applied Logic, 67, 325–348.
Matiyasevich, Yu. (2000). Hilbert’s tenth problem: What was done and what is to be done. Contemporary Mathematics, 270, 1–47.
Matiyasevich, Yu. (2005). Hilbert’s tenth problem and paradigms of computation. Lecture Notes in Computer Science, 3526, 310–321.
Matiyasevich, Yu. (2009). Existential arithmetization of Diophantine equations. Annals of Pure and Applied Logic, 157(2–3), 225–233.
Matiyasevich, Yu., & Robinson, J. (1974). Two universal 3-quantifier representations of recursively enumerable sets (in Russian). In B. A. Kushner & N. M. Nagornyĭ (Eds.), Teoriya algorifmov i matematicheskaya logika, Vychislitel’nyĭ Tsentr, Akademiya Nauk SSSR, Moscow, pp. 112–123. Reprinted in [51, pp. 223–234]. English translation in http://arxiv.org/abs/0802.1052.
Poonen, B. (2003). Hilbert’s tenth problem and Mazur’s conjecture for large subrings of \(\mathbb{Q}\). Journal of the American Mathematical Society, 16(4), 981–990.
Post, E. L. (1944). Recursively enumerable sets of positive integers and their decision problems. Bulletin of American Mathematical Society , 50, 284–316. Reprinted in [46, pp. 461–494].
Post, E. L. (1947). Recursive unsolvability of a problem of Thue. Journal of Symbolic Logic , 12, 1–11. Reprinted in [46, pp. 503–513].
Post, E. L. (1994). Solvability, provability, definability: The collected works of E. L. Post. In M. Davis, (Ed.), Birkhäuser, Boston.
Putnam, H. (1960). An unsolvable problem in number theory. Journal of Symbolic Logic, 25(3), 220–232.
Robinson, J. (1952). Existential definability in arithmetic, Transactions of the American Mathematical Society , 72, 437–449. Reprinted in [51, pp. 47–59].
Robinson, J. B. (1960). The undecidability of exponential Diophantine equations. Notices of the American Mathematical Society, 7(1), 75.
Robinson, J. Unsolvable Diophantine problems. Proceedings of the American Mathematical Society , 22(2), 534–538. Reprinted in [51, pp. 195–199].
Robinson, R. M. (1956). Arithmetical representation of recursively enumerable sets. Journal of Symbolic Logic, 21(2), 162–186.
Robinson, R. M. (1972). Some representations of Diophantine sets. Journal of Symbolic Logic, 37(3), 572–578.
Shanks, D. (1973). Five number-theoretic algorithms. In R. S. D. Thomas & H. C. Williams (Eds.), Proceedings of the Second Manitoba Conference on Numerical Mathematics (University of Manitoba (pp. 51–70). Winnipeg, Manitoba, 5–7 October 1972, volume VII of Congressus Numerantium Winnipeg, Manitoba: Utilitas Mathematica Publishing.
Shanks, D., & Wagstaff, S. S, Jr. (1995). 48 more solutions of Martin Davis’s quaternary quartic equation. Mathematics of Computation, 64(212), 1717–1731.
Shlapentokh, A. (2007). Hilbert’s tenth problem, New Mathematical Monographs (vol. 7). Cambridge: Cambridge University Press.
Shlapentokh, A. Extensions of Hilbert’s Tenth Problem: Definability and Decidability in Number Theory. This book, pp. 57–91
The collected works of Julia Robinson. (1996). S. Feferman, edt. Providence, RI: American Mathematical Society. ISBN 0-8218-0575-4. (Collected Works, vol. 6).
Thue, A. (1914). Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln. Skrifter utgit av Videnskapsselskapet i Kristiana, I in Matematisk naturvidenskabelig klasse, Norske Videnskaps-Akademi, Oslo, 10, 493–524. Reprinted in: Nagell, T., Selberg, A., Selberg, S., & Thalberg, K. (Eds.). Selected Mathematical Papers of Axel Thue. Universitetsforlaget, Oslo, 1977.
van Emde Boas, P. (1997). The convenience of tiling. In A. Sorbi, (Ed.), Complexity, logic and recursion theory, Lecture Notes in Pure and Applied Mathematics (vol. 187, pp. 331–363).
Vsemirnov, M. A. (1995). Diophantine representations of linear recurrent relations (in Russian). Zapiski Nauchnykh Seminarov Peterburgskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova RAN , 227, 52–60. Translated in Journal of Mathematical Sciences (New York), 89(2), 1113–1118 (1998).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Matiyasevich, Y. (2016). Martin Davis and Hilbert’s Tenth Problem. In: Omodeo, E., Policriti, A. (eds) Martin Davis on Computability, Computational Logic, and Mathematical Foundations. Outstanding Contributions to Logic, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-41842-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-41842-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41841-4
Online ISBN: 978-3-319-41842-1
eBook Packages: Religion and PhilosophyPhilosophy and Religion (R0)