Martin Davis and Hilbert’s Tenth Problem | SpringerLink
Skip to main content

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 10))

Abstract

The paper presents the history of the negative solution of Hilbert’s tenth problem , the role played in it by Martin Davis, consequent modifications of the original proof of DPRM-theorem, its improvements and applications, and a new (2010) conjecture of Martin Davis .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 20019
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blum, M. (1967). A machine-independent theory of the complexity of recursive functions. Journal of the ACM, 14(2), 322–336.

    Article  Google Scholar 

  2. Browder. (Ed.). (1976). Mathematical Developments arising from Hilbert Problems. Proceedings of Symposia in Pure Mathematics (vol. 28). American Mathematical Society.

    Google Scholar 

  3. Davis, M. (1950). Arithmetical problems and recursively enumerable predicates (abstract). Journal of Symbolic Logic, 15(1), 77–78.

    Google Scholar 

  4. Davis, M. (1950). On the theory of recursive unsolvability. PhD thesis, Princeton University.

    Google Scholar 

  5. Davis, M. (1953). Arithmetical problems and recursively enumerable predicates. Journal of Symbolic Logic, 18(1), 33–41.

    Article  Google Scholar 

  6. Davis, M. (1958). Computability and unsolvability. New York: McGraw-Hill. Reprinted with an additional appendix, Dover 1983.

    Google Scholar 

  7. Davis, M. (1968). One equation to rule them all. Transactions of the New York Academy of Sciences. Series II, 30(6), 766–773.

    Google Scholar 

  8. Davis, M. (1971). An explicit Diophantine definition of the exponential function. Communications on Pure and Applied Mathematics, 24(2), 137–145.

    Article  Google Scholar 

  9. Davis, M. (1972). On the number of solutions of Diophantine equations. Proceedings of the American Mathematical Society, 35(2), 552–554.

    Article  Google Scholar 

  10. Davis, M. (1973). Speed-up theorems and Diophantine equations. In R. Rustin (Ed.), Courant computer science symposium 7: Computational complexity (pp. 87–95). New York: Algorithmics Press.

    Google Scholar 

  11. Davis, M. (2010). Representation theorems for r.e. sets and a conjecture related to Poonen’s larges subring of \(\mathbb{Q}\). Zapiski Nauchnykh Seminarov Peterburgskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova RAN (POMI), 377, 50–54. Reproduced in: Journal of Mathematical Sciences, 171(6), 728–730 (2010).

    Google Scholar 

  12. Davis, M., Matijasevich, Yu., & Robinson, J. Hilbert’s tenth problem. Diophantine equations: Positive aspects of a negative solution, pp. 323–378 in [2]. Reprinted in [51, pp. 269–324].

    Google Scholar 

  13. Davis, M., & Putnam, H. (1959). A computational proof procedure; Axioms for number theory; Research on Hilbert’s Tenth Problem. O.S.R. Report AFOSR TR59-124, U.S. Air Force.

    Google Scholar 

  14. Davis, M., Putnam, H., & Robinson, J. (1961). The decision problem for exponential Diophantine equations. Annals of Mathematics , 74(2), 425–436. Reprinted in [51].

    Google Scholar 

  15. Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I. Monatshefte für Mathematik und Physik bf 38(1), 173–198. Reprinted with English translation in: S. Feferman et al., (Eds.) (1986). Kurt Gödel. Collected Works (vol. I, pp. 144–195). Oxford University Press. English translation can also be found in: M. Davis, (Ed.) (1965). The Undecidable (pp. 4–38). Raven Press, Hewlett, New York and in: J. van Heijenoort, (Ed.) (1967). From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931 (pp. 596–616). Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  16. Green, B., & Tao, T. (2008). The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics , 167, 481–547. doi:10.4007/annals.2008.167.481, arXiv:math.NT/0404188.

    Google Scholar 

  17. Herrman, O. (1971). A non-trivial solution of the Diophantine equation \(9(x^2+7y^2)^2 - 7(u^2 + 7v^2)^2=2\). In A. O. L. Atkin & B. J. Birch (Eds.), Computers in number theory (pp. 207–212). London: Academic Press.

    Google Scholar 

  18. Hilbert, D. (1900) Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker Kongress zu Paris 1900. Nachrichten von der Königliche Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys.Kl. 253–297. See also Hilbert, D. (1935). Gesammelte Abhandlungen (vol. 3), Berlin: Springer. (Reprinted: Chelsea, New York (1965)). English translation: Bulletin of the American Mathematical Society, 8, 437–479 (1901–1902); reprinted in: [2, pp. 1–34].

    Google Scholar 

  19. Jones, J. P. (1982). Universal Diophantine equation. Journal Symbolic Logic, 47, 549–571.

    Article  Google Scholar 

  20. Jones, J. P., & Matijasevič, Ju V. (1982). Exponential Diophantine representation of recursively enumerable sets. In J. Stern (Ed.), Proceedings of the Herbrand Symposium: Logic Colloquium’81, Studies in Logic and the Foundations of Mathematics, 107, 159–177. Amsterdam: North Holland.

    Google Scholar 

  21. Jones, J. P., & Matijasevič, Ju V. (1982). A new representation for the symmetric binomial coefficient and its applications. Annales Sci. Mathém. du Québec, 6(1), 81–97.

    Google Scholar 

  22. Jones, J. P., & Matijasevič, Ju V. (1983). Direct translation of register machines into exponential Diophantine equations. In L. Priese (Ed.), Report on the 1st GTI-workshop (pp. 117–130). Reihe Theoretische Informatik: Universität-Gesamthochschule Paderborn.

    Google Scholar 

  23. Jones, J. P., & Matijasevič, Ju V. (1984). Register machine proof of the theorem on exponential Diophantine representation of enumerable sets. Journal Symbolic Logic, 49(3), 818–829.

    Article  Google Scholar 

  24. Jones, J. P., & Matijasevič, Ju V. (1991). Proof of recursive unsolvability of Hilbert’s tenth problem. American Mathematical Monthly, 98(8), 689–709.

    Article  Google Scholar 

  25. Kreisel, G. (1958). Mathematical significance of consistency proofs. Journal of Symbolic Logic, 23(2), 155–182.

    Article  Google Scholar 

  26. Levitz, H. (1985). Decidability of some problem pertaining to base 2 exponential Diophantine equations. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 31(2), 109–115.

    Article  Google Scholar 

  27. Mal’tsev, A. I. (1968). On some boundary questions between algebra and logic (in Russian). Trudy Mezhdunarodnogo Kongressa Matematikov (Moskva, 1966), pp. 217–231. Translated in: American Mathematical Society Translations. Series 2, Vol. 70: 31 invited addresses (8 in abstract) at the International Congress of Mathematicians in Moscow, 1966. American Mathematical Society, Providence, R.I. 1968, p. 266.

    Google Scholar 

  28. Markov, A. A. (1947). Impossibility of certain algorithms in the theory of associative systems (in Russian), Doklady Akademii Nauk SSSR, 55(7), 587–590 (1947). Translated in: Compte rendus de l’Académie des Sciences de l’U.R.S.S., 55, 583–586 (1947).

    Google Scholar 

  29. Matiyasevich, Yu. V. (1970). Enumerable sets are Diophantine (in Russian). Dokl. AN SSSR, 191(2), 278–282; Translated in: Soviet Math. Doklady, 11(2), 354–358. Correction ibid 11 (6) (1970), vi. Reprinted on pp. 269–273 in: Mathematical logic in the 20th century, G. E. Sacks, (Ed.), (2003). Singapore University Press and World Scientific Publishing Co., Singapore and River Edge, NJ.

    Google Scholar 

  30. Matiyasevich, Yu. V. (1972). Diophantine sets (in Russian). Uspekhi Matematicheskikh Nauk , 27(5), 185–222. English translation: Russian Mathematical Surveys, 27(5), 124–164 (1972).

    Google Scholar 

  31. Matiyasevich, Yu. V. (1972). Arithmetical representations of enumerable sets with a small number of quantifiers (in Russian). Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR (LOMI) , 32, 77–84. English translation: Journal of Soviet Mathematics, 6(4), 410–416 (1976).

    Google Scholar 

  32. Matiyasevich, Yu. V. (1974). Existence of noneffectivizable estimates in the theory of exponential Diophantine equations (in Russian). Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR (LOMI), 40, 77–93; Translated in: Journal of Soviet Mathematics, 8(3), 299–311 (1977)

    Google Scholar 

  33. Matiyasevich, Yu. V. (1976). A new proof of the theorem on exponential Diophantine representation of enumerable sets (in Russian). Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR (LOMI), 60, 75–92; Translated in: Journal of Soviet Mathematics, 14(5), 1475–1486 (1980)

    Google Scholar 

  34. Matiyasevich, Yu. V. (1977). Some purely mathematical results inspired by mathematical logic. Proceedings of Fifth International Congress on Logic, Methodology and Philosophy of science, London, Ontario, 1975 (pp. 121–127), Reidel, Dordrecht.

    Google Scholar 

  35. Matiyasevich, Yu. V. (1984). On investigations on some algorithmic problems in algebra and number theory. Trudy Matematicheskogo instituta im. V. A. Steklova of Academy of Sciences of the USSR, 168, 218–235. Translated in Proceedings of the Steklov Institute of Mathematics, 168, 227–252 (1986).

    Google Scholar 

  36. Matiyasevich, Yu. V. (1979). Algorithmic unsolvability of exponential Diophantine equations in three unknowns (in Russian). In A. A.Markov, & V. I.Homich (Eds), Studies in the Theory of Algorithms and Mathematical Logic, Computing Center Russian Academy Sci., Moscow, pp. 69–78; Translated in Selecta Mathematica Sovietica, 3, 223–232 (1983/1984).

    Google Scholar 

  37. Matiyasevich, Yu. V. (1993). Hilbert’s Tenth Problem (in Russian). Fizmatlit, Moscow. English translation: MIT Press, Cambridge (Massachusetts) London (1993). French translation: Le dixième Problème de Hilbert, Masson, Paris Milan Barcelone (1995). http://logic.pdmi.ras.ru/~yumat/H10Pbook.

  38. Matiyasevich, Yu. (1994). A direct method for simulating partial recursive functions by Diophantine equations. Annals of Pure and Applied Logic, 67, 325–348.

    Article  Google Scholar 

  39. Matiyasevich, Yu. (2000). Hilbert’s tenth problem: What was done and what is to be done. Contemporary Mathematics, 270, 1–47.

    Article  Google Scholar 

  40. Matiyasevich, Yu. (2005). Hilbert’s tenth problem and paradigms of computation. Lecture Notes in Computer Science, 3526, 310–321.

    Article  Google Scholar 

  41. Matiyasevich, Yu. (2009). Existential arithmetization of Diophantine equations. Annals of Pure and Applied Logic, 157(2–3), 225–233.

    Article  Google Scholar 

  42. Matiyasevich, Yu., & Robinson, J. (1974). Two universal 3-quantifier representations of recursively enumerable sets (in Russian). In B. A. Kushner & N. M. Nagornyĭ (Eds.), Teoriya algorifmov i matematicheskaya logika, Vychislitel’nyĭ Tsentr, Akademiya Nauk SSSR, Moscow, pp. 112–123. Reprinted in [51, pp. 223–234]. English translation in http://arxiv.org/abs/0802.1052.

  43. Poonen, B. (2003). Hilbert’s tenth problem and Mazur’s conjecture for large subrings of \(\mathbb{Q}\). Journal of the American Mathematical Society, 16(4), 981–990.

    Article  Google Scholar 

  44. Post, E. L. (1944). Recursively enumerable sets of positive integers and their decision problems. Bulletin of American Mathematical Society , 50, 284–316. Reprinted in [46, pp. 461–494].

    Google Scholar 

  45. Post, E. L. (1947). Recursive unsolvability of a problem of Thue. Journal of Symbolic Logic , 12, 1–11. Reprinted in [46, pp. 503–513].

    Google Scholar 

  46. Post, E. L. (1994). Solvability, provability, definability: The collected works of E. L. Post. In M. Davis, (Ed.), Birkhäuser, Boston.

    Google Scholar 

  47. Putnam, H. (1960). An unsolvable problem in number theory. Journal of Symbolic Logic, 25(3), 220–232.

    Article  Google Scholar 

  48. Robinson, J. (1952). Existential definability in arithmetic, Transactions of the American Mathematical Society , 72, 437–449. Reprinted in [51, pp. 47–59].

    Google Scholar 

  49. Robinson, J. B. (1960). The undecidability of exponential Diophantine equations. Notices of the American Mathematical Society, 7(1), 75.

    Google Scholar 

  50. Robinson, J. Unsolvable Diophantine problems. Proceedings of the American Mathematical Society , 22(2), 534–538. Reprinted in [51, pp. 195–199].

    Google Scholar 

  51. Robinson, R. M. (1956). Arithmetical representation of recursively enumerable sets. Journal of Symbolic Logic, 21(2), 162–186.

    Article  Google Scholar 

  52. Robinson, R. M. (1972). Some representations of Diophantine sets. Journal of Symbolic Logic, 37(3), 572–578.

    Article  Google Scholar 

  53. Shanks, D. (1973). Five number-theoretic algorithms. In R. S. D. Thomas & H. C. Williams (Eds.), Proceedings of the Second Manitoba Conference on Numerical Mathematics (University of Manitoba (pp. 51–70). Winnipeg, Manitoba, 5–7 October 1972, volume VII of Congressus Numerantium Winnipeg, Manitoba: Utilitas Mathematica Publishing.

    Google Scholar 

  54. Shanks, D., & Wagstaff, S. S, Jr. (1995). 48 more solutions of Martin Davis’s quaternary quartic equation. Mathematics of Computation, 64(212), 1717–1731.

    Google Scholar 

  55. Shlapentokh, A. (2007). Hilbert’s tenth problem, New Mathematical Monographs (vol. 7). Cambridge: Cambridge University Press.

    Google Scholar 

  56. Shlapentokh, A. Extensions of Hilbert’s Tenth Problem: Definability and Decidability in Number Theory. This book, pp. 57–91

    Google Scholar 

  57. The collected works of Julia Robinson. (1996). S. Feferman, edt. Providence, RI: American Mathematical Society. ISBN 0-8218-0575-4. (Collected Works, vol. 6).

    Google Scholar 

  58. Thue, A. (1914). Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln. Skrifter utgit av Videnskapsselskapet i Kristiana, I in Matematisk naturvidenskabelig klasse, Norske Videnskaps-Akademi, Oslo, 10, 493–524. Reprinted in: Nagell, T., Selberg, A., Selberg, S., & Thalberg, K. (Eds.). Selected Mathematical Papers of Axel Thue. Universitetsforlaget, Oslo, 1977.

    Google Scholar 

  59. van Emde Boas, P. (1997). The convenience of tiling. In A. Sorbi, (Ed.), Complexity, logic and recursion theory, Lecture Notes in Pure and Applied Mathematics (vol. 187, pp. 331–363).

    Google Scholar 

  60. Vsemirnov, M. A. (1995). Diophantine representations of linear recurrent relations (in Russian). Zapiski Nauchnykh Seminarov Peterburgskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova RAN , 227, 52–60. Translated in Journal of Mathematical Sciences (New York), 89(2), 1113–1118 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Matiyasevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matiyasevich, Y. (2016). Martin Davis and Hilbert’s Tenth Problem. In: Omodeo, E., Policriti, A. (eds) Martin Davis on Computability, Computational Logic, and Mathematical Foundations. Outstanding Contributions to Logic, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-41842-1_2

Download citation

Publish with us

Policies and ethics