Abstract
Quantitative cell state measurements can provide a wealth of information about mechanism of action of chemical compounds and gene functionality. Here we present a comparison of cell cycle disruption measurements from commonly used flow cytometry (generating one-dimensional signal data) and bioimaging (producing two-dimensional image data). Our results show high correlation between the two approaches indicating that image-based screening can be used as an alternative to flow cytometry. Furthermore, we discuss the benefits of image informatics over conventional single-signal flow cytometry.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zanella, F., Lorens, J.B., Link, W.: High content screening: seeing is believing. Trends Biotechnol. 28, 237–245 (2010)
Gasparri, F., Cappella, P., Galvani, A.: Multiparametric cell cycle analysis by automated microscopy. J. Biomol. Screen. 11, 586–598 (2006)
Chan, G.K.Y., Kleinheinz, T.L., Peterson, D., Moffat, J.G.: A simple high-content cell cycle assay reveals frequent discrepancies between cell number and ATP and MTS proliferation assays. PLoS ONE 8, e63583 (2013). doi:10.1371/journal.pone.0063583
Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., et al.: Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006). doi:10.1186/gb-2006-7-10-r100
Matuszewski, D.J., Wählby, C., Puigvert, J.C., Sintorn, I.M.: PopulationProfiler: a tool for population analysis and visualization of image-based cell screening data. PLOS ONE 11, e0151554 (2016). doi:10.1371/journal.pone.0151554
Matuszewski, D.J., Wählby, C., Puigvert, J.C., Sintorn, I.M.: PopulationProfiler site. http://cb.uu.se/~damian/PopulationProfiler.html
Black, C.B., Duensing, T.D., Trinkle, L.S., Dunlay, R.T.: Cell-based screening using high-throughput flow cytometry. Assay Drug Dev. Technol. 9, 13–20 (2011)
Amnis Corporation. https://amnis.com/flowsight.html. Accessed 25 Feb 2016
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Matuszewski, D.J., Sintorn, IM., Puigvert, J.C., Wählby, C. (2016). Comparison of Flow Cytometry and Image-Based Screening for Cell Cycle Analysis. In: Campilho, A., Karray, F. (eds) Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science(), vol 9730. Springer, Cham. https://doi.org/10.1007/978-3-319-41501-7_70
Download citation
DOI: https://doi.org/10.1007/978-3-319-41501-7_70
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41500-0
Online ISBN: 978-3-319-41501-7
eBook Packages: Computer ScienceComputer Science (R0)