Sinogram Restoration Using Confidence Maps to Reduce Metal Artifact in Computed Tomography | SpringerLink
Skip to main content

Sinogram Restoration Using Confidence Maps to Reduce Metal Artifact in Computed Tomography

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9730))

Included in the following conference series:

  • 2821 Accesses

Abstract

Metal artifact reduction (MAR) is a well-known problem and lots of studies have been performed during the last decades. The common standard methods for MAR consist of synthesizing missing projection data by using an interpolation or in-painting process. However, no method has been yet proposed to solve MAR problem when no sinogram is available. This paper proposes a novel MAR approach using confidence maps to restore an artifacted sinogram computed directly from the reconstructed image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10067
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12584
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Edward Boas, F., Fleischmann, D.: CT artifacts: causes and reduction techniques. Imaging Med. 4(2), 229–240 (2012)

    Article  Google Scholar 

  2. Chen, Y., Li, Y., Guo, H., Hu, Y., Luo, L., Yin, X., Gu, J., Christine, T.: CT metal artifact reduction method based on improved image segmentation and sinogram in-painting. Math. Probl. Eng. 2012 (2012)

    Google Scholar 

  3. De Man, B., Nuyts, J., Dupont, P., Marchal, G., Suetens, P.: Reduction of metal streak artifacts in X-ray computed tomography using a transmission maximum a posteriori algorithm. In: Nuclear Science Symposium, Conference Record, vol. 2, pp. 850–854. IEEE (1999)

    Google Scholar 

  4. Fernandez, J.-J., Laugks, U., Schaffer, M., Bäuerlein, F.J.B., Khoshouei, M., Baumeister, W., Lucic, V.: Removing contamination-induced reconstruction artifacts from cryo-electron tomograms. Biophys. J. 110, 850 (2015)

    Article  Google Scholar 

  5. Li, H., Noel, C., Haijian Chen, H., Li, H., Low, D., Moore, K., Klahr, P., Michalski, J., Gay, H.A., Thorstad, W., et al.: Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy. Med. Phys. 39(12), 7507–7517 (2012)

    Article  Google Scholar 

  6. Liu, J.J., Watt-Smith, S.R., Smith, S.M.: CT reconstruction using FBP with sinusoidal amendment for metal artefact reduction. In: DICTA, pp. 439–448. Citeseer (2003)

    Google Scholar 

  7. Meyer, E., Raupach, R., Lell, M., Schmidt, B., Kachelrieß, M.: Normalized metal artifact reduction (NMAR) in computed tomography. MED. PHYS. 37(10), 5482–5493 (2010)

    Article  Google Scholar 

  8. Meyer, E., Raupach, R., Lell, M., Schmidt, B., Kachelrieß, M.: Frequency split metal artifact reduction (FSMAR) in computed tomography. Med. Phys. 39(4), 1904–1916 (2012)

    Article  Google Scholar 

  9. Paziresh, M., Kingston, A., Myers, G., Latham, S., Sheppard, A.: Software X-ray beam hardening correction of cylindrical specimens. In: International Conference on Tomography of Materials and Structures, pp. 187–9190 (2013)

    Google Scholar 

  10. Prewitt, J., Mendelsohn, M.L.: The analysis of cell images*. Ann. N. Y. Acad. Sci. 128(3), 1035–1053 (1966)

    Article  Google Scholar 

  11. Snyder, D.L., O’Sullivan, J.A., Murphy, R.J., Politte, D.G., Whiting, B.R., Williamson, J.F.: Image reconstruction for transmission tomography when projection data are incomplete. Phys. Med. Biol. 51(21), 5603 (2006)

    Article  Google Scholar 

  12. Wang, G., Snyder, D.L., O’Sullivan, J., Vannier, M.W.: Iterative deblurring for CT metal artifact reduction. IEEE Trans. Med. Imaging 15(5), 657–664 (1996)

    Article  Google Scholar 

  13. Yu, H., Zeng, K., Bharkhada, D.K., Wang, G., Madsen, M.T., Saba, O., Policeni, B., Howard, M.A., Smoker, W.R.K.: A segmentation-based method for metal artifact reduction. Acad. Radiol. 14(4), 495–504 (2007)

    Article  Google Scholar 

  14. Zhang, Y., Yan, H., Jia, X., Yang, J., Jiang, S.B., Mou, X.: A hybrid metal artifact reduction algorithm for X-ray CT. Med. Phys. 40(4), 041910 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Frédérique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Frédérique, L., Recur, B., Genot, S., Domenger, JP., Desbarats, P. (2016). Sinogram Restoration Using Confidence Maps to Reduce Metal Artifact in Computed Tomography. In: Campilho, A., Karray, F. (eds) Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science(), vol 9730. Springer, Cham. https://doi.org/10.1007/978-3-319-41501-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41501-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41500-0

  • Online ISBN: 978-3-319-41501-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics