Classifying Bugs with Interpolants | SpringerLink
Skip to main content

Classifying Bugs with Interpolants

  • Conference paper
  • First Online:
Tests and Proofs (TAP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9762))

Included in the following conference series:

Abstract

We present an approach to the classification of error messages in the context of static checking in the style of ESC/Java. The idea is to compute a semantics-based signature for each error message and then group together error messages with the same signature. The approach aims at exploiting modern verification techniques based on, e.g., Craig interpolation in order to generate small but significant signatures. We have implemented the approach and applied it to three benchmark sets (from Apache Ant, Apache Cassandra, and our own tool). Our experiments indicate an interesting practical potential. More than half of the considered error messages (for procedures with more than just one error message) can be grouped together with another error message.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The fact that we use a static checker is not crucial for our discussion. The error messages could also be generated using a bounded model checker such as [14, 20], or a testing tool such as Randoop [27].

  2. 2.

    Note that we use weakest preconditions, as opposed to weakest liberal preconditions; see Sect. 4. For example, the trace \(\mathtt {assume}(x = 0); \mathtt {assert}(x \not = 0)\) is not infeasible since \(\mathsf {wp}(\mathtt {assume}(x = 0); \mathtt {assert}(x \not = 0), \bot ) \;=\; (x = 0 \Rightarrow (x \not = 0 \wedge \bot )) \;=\; (x \not = 0)\).

  3. 3.

    In the general case, we may not be able to describe \(s_0\) using simple equalities and instead must consider its diagram [6]. For the sake of the clarity of presentation, we skim over these technicalities.

  4. 4.

    http://www.csl.sri.com/~schaef/experiments.zip.

References

  1. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: ICSE, pp. 361–370. ACM (2006)

    Google Scholar 

  2. Arlt, S., Rubio-González, C., Rümmer, P., Schäf, M., Shankar, N.: The gradual verifier. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 313–327. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in counterexample traces. SIGPLAN Not. 38, 97–105 (2003)

    Article  Google Scholar 

  4. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.: Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91 (2011)

    Article  Google Scholar 

  5. Tabaei Befrouei, M., Wang, C., Weissenbacher, G.: Abstraction and mining of traces to explain concurrency bugs. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 162–177. Springer, Heidelberg (2014)

    Google Scholar 

  6. Chang, C., Keisler, H.J.: Model Theory. Studies in Logic and the Foundations of Mathematics. Elsevier Science, North-Holland (1990)

    MATH  Google Scholar 

  7. Christ, J., Ermis, E., Schäf, M., Wies, T.: Flow-sensitive fault localization. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 189–208. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 472–479. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL, pp. 269–282. ACM (1979)

    Google Scholar 

  10. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of necessary preconditions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 128–148. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  12. Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive inference. In: PLDI, pp. 181–192 (2012)

    Google Scholar 

  13. Ermis, E., Schäf, M., Wies, T.: Error invariants. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 187–201. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Falke, S., Merz, F., Sinz, C.: LLBMC: improved bounded model checking of \(\sf C\) programs using LLVM. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 623–626. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static checking for Java. SIGPLAN Not. 37, 234–245 (2002)

    Article  Google Scholar 

  16. Gupta, A., Henzinger, T.A., Radhakrishna, A., Samanta, R., Tarrach, T.: Succinct representation of concurrent trace sets. In: POPL, pp. 433–444. ACM (2015)

    Google Scholar 

  17. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 36–52. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Jin, W., Orso, A.: Bugredux: reproducing field failures for in-house debugging. In: ICSE, pp. 474–484. IEEE (2012)

    Google Scholar 

  19. Kremenek, T., Engler, D.: Z-ranking: using statistical analysis to counter the impact of static analysis approximations. In: SAS, pp. 295–315 (2003)

    Google Scholar 

  20. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 389–391. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  21. Lal, A., Qadeer, S.: Powering the static driver verifier using corral. In: FSE, pp. 202–212. ACM (2014)

    Google Scholar 

  22. Le, W., Soffa, M.L.: Path-based fault correlations. In: FSE, pp. 307–316 (2010)

    Google Scholar 

  23. Lee, W., Lee, W., Yi, K.: Sound non-statistical clustering of static analysis alarms. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 299–314. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345, 101–121 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Murali, V., Sinha, N., Torlak, E., Chandra, S.: What gives? a hybrid algorithm for error trace explanation. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471, pp. 270–286. Springer, Heidelberg (2014)

    Google Scholar 

  26. Nelson, G.: A generalization of Dijkstra’s calculus. ACM Trans. Program. Lang. Syst. 11(4), 517–561 (1989)

    Article  Google Scholar 

  27. Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing for java. In: Companion to the 22nd ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications Companion, OOPSLA 2007, New York, NY, USA, pp. 815–816. ACM (2007)

    Google Scholar 

  28. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation using Gröbner bases. In: POPL, pp. 318–329. ACM (2004)

    Google Scholar 

  30. Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J.: An approach to detecting duplicate bug reports using natural language and execution information. In: ICSE, pp. 461–470. ACM (2008)

    Google Scholar 

  31. Zeller, A.: Isolating cause-effect chains from computer programs. In: SIGSOFT FSE, pp. 1–10 (2002)

    Google Scholar 

Download references

Acknowledgement

This work is funded in parts by AFRL contract No. FA8750-15-C-0010 and the National Science Foundation under grant CCF-1350574.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schäf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Podelski, A., Schäf, M., Wies, T. (2016). Classifying Bugs with Interpolants. In: Aichernig, B., Furia, C. (eds) Tests and Proofs. TAP 2016. Lecture Notes in Computer Science(), vol 9762. Springer, Cham. https://doi.org/10.1007/978-3-319-41135-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41135-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41134-7

  • Online ISBN: 978-3-319-41135-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics