Abstract
Manufacturing Cell Design is a problem that consist in distributing machines in cells, in such a way productivity is improved. The idea is that a product, build up by using different parts, has the least amount of travel on its manufacturing process. To solve the MCDP we use the Bat Algorithm, a metaheuristic inspired by a feature of the microbats, the echolocation. This feature allows an automatic exploration and exploitation balance, by controlling the rate of volume and emission pulses during the search. Our approach has been tested by using a well-known set of benchmark instances, reaching optimal values for most of them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aljaber, N., Baek, W., Chen, C.L.: A tabu search approach to the cell formation problem. Comput. Ind. Eng. 32(1), 169–185 (1997)
Boctor, F.F.: A linear formulation of the machine-part cell formation problem. Int. J. Prod. Res. 29(2), 343–356 (1991)
Boulif, M., Atif, K.: A new branch-&-bound-enhanced genetic algorithm for the manufacturing cell formation problem. Comput. Oper. Res. 33(8), 2219–2245 (2006)
Durán, O., Rodriguez, N., Consalter, L.A.: Collaborative particle swarm optimization with a data mining technique for manufacturing cell design. Expert Syst. Appl. 37(2), 1563–1567 (2010)
Gupta, Y., Gupta, M., Kumar, A., Sundaram, C.: A genetic algorithm-based approach to cell composition and layout design problems. Int. J. Prod. Res. 34(2), 447–482 (1996)
James, T.L., Brown, E.C., Keeling, K.B.: A hybrid grouping genetic algorithm for the cell formation problem. Comput. Oper. Res. 34(7), 2059–2079 (2007)
Lozano, S., Adenso-Diaz, B., Eguia, I., Onieva, L., et al.: A one-step tabu search algorithm for manufacturing cell design. J. Oper. Res. Soc. 50(5), 509–516 (1999)
Nsakanda, A.L., Diaby, M., Price, W.L.: Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings. Eur. J. Oper. Res. 171(3), 1051–1070 (2006)
Soto, R., Kjellerstrand, H., Durán, O., Crawford, B., Monfroy, E., Paredes, F.: Cell formation in group technology using constraint programming and boolean satisfiability. Expert Syst. Appl. 39(13), 11423–11427 (2012)
Venugopal, V., Narendran, T.: A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Comput. Ind. Eng. 22(4), 469–480 (1992)
Wu, T.H., Chang, C.C., Chung, S.H.: A simulated annealing algorithm for manufacturing cell formation problems. Expert Syst. Appl. 34(3), 1609–1617 (2008)
Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, United Kingdom (2010)
Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Comput. 3(5), 267–274 (2011)
Yang, X.S., He, X.: Bat algorithm: literature review and applications. Int. J. Bio-Inspired Comput. 5(3), 141–149 (2013)
Acknowledgements
Ricardo Soto is supported by grant CONICYT/FONDECYT/REGULAR/1160455, Broderick Crawford is supported by grant CONICYT/FONDECYT/REGULAR/1140897, Victor Reyes is supported by grant INF-PUCV 2015, and Ignacio Araya is supported by grant CONICYT/FONDECYT/INICIACION/11121366.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Soto, R. et al. (2016). Solving Manufacturing Cell Design Problems by Using a Bat Algorithm Approach. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2016. Lecture Notes in Computer Science(), vol 9712. Springer, Cham. https://doi.org/10.1007/978-3-319-41000-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-41000-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40999-3
Online ISBN: 978-3-319-41000-5
eBook Packages: Computer ScienceComputer Science (R0)