Adaptive Semantics-Aware Malware Classification | SpringerLink
Skip to main content

Adaptive Semantics-Aware Malware Classification

  • Conference paper
  • First Online:
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA 2016)

Abstract

Automatic malware classification is an essential improvement over the widely-deployed detection procedures using manual signatures or heuristics. Although there exists an abundance of methods for collecting static and behavioral malware data, there is a lack of adequate tools for analysis based on these collected features. Machine learning is a statistical solution to the automatic classification of malware variants based on heterogeneous information gathered by investigating malware code and behavioral traces. However, the recent increase in variety of malware instances requires further development of effective and scalable automation for malware classification and analysis processes.

In this paper, we investigate the topic modeling approaches as semantics-aware solutions to the classification of malware based on logs from dynamic malware analysis. We combine results of static and dynamic analysis to increase the reliability of inferred class labels. We utilize a semi-supervised learning architecture to make use of unlabeled data in classification. Using a nonparametric machine learning approach to topic modeling we design and implement a scalable solution while maintaining advantages of semantics-aware analysis. The outcomes of our experiments reveal that our approach brings a new and improved solution to the reoccurring problems in malware classification and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The Cuckoo Sandbox. https://www.cuckoosandbox.org/

  2. VirusTotal. http://www.virustotal.com

  3. Alvarez, V.M.: Yara. http://plusvic.github.io/yara/

  4. Anderson, B., Storlie, C., Lane, T.: Improving malware classification: bridging the static/dynamic gap. In: Workshop on Security and Artificial Intelligence (AISec) (2012)

    Google Scholar 

  5. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-based malware clustering. In: ISOC Network and Distributed System Security Symposium (NDSS) (2009)

    Google Scholar 

  7. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  8. Chau, D.H., Nachenberg, C., Wilhelm, J., Wright, A., Faloutsos, C.: Polonium: tera-scale graph mining and inference for malware detection. In: SIAM International Conference on Data Mining (SDM) (2011)

    Google Scholar 

  9. Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using random projections and neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013)

    Google Scholar 

  10. Dumais, S.T.: Latent semantic analysis. Ann. Rev. Inf. Sci. Technol. 38(1), 188–230 (2004)

    Article  Google Scholar 

  11. Dumitras, T., Shou, D.: Toward a standard benchmark for computer security research: the Worldwide Intelligence Network Environment (WINE). In: Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS) (2011)

    Google Scholar 

  12. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd (1996)

    Google Scholar 

  13. Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1), 18–28 (2009)

    Article  Google Scholar 

  14. Hanif, Z., Calhoun, T., Trost, J.: Binarypig: Scalable Static Binary Analysis Over Hadoop. Black Hat, USA (2013)

    Google Scholar 

  15. Hanif, Z., Lengyel, T.K., Webster, G.D.: Internet-Scale File Analysis. Black Hat, USA (2015)

    Google Scholar 

  16. Heller, K., Svore, K., Keromytis, A.D., Stolfo, S.: One class support vector machines for detecting anomalous windows registry accesses. In: Workshop on Data Mining for Computer Security (DMSEC) (2003)

    Google Scholar 

  17. Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for scalable triage and semantic analysis. In: Conference on Computer and Communications Security (CCS) (2011)

    Google Scholar 

  18. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  19. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.: Scalability, fidelity and stealth in the Drakvuf dynamic malware analysis system. In: Annual Computer Security Applications Conference (ACSAC) (2014)

    Google Scholar 

  20. Leung, K., Leckie, C.: Unsupervised anomaly detection in network intrusion detection using clusters. In: Australasian Conference on Computer Science (2005)

    Google Scholar 

  21. Maxwell, K.: Maltrieve. https://github.com/krmaxwell/maltrieve

  22. Newman, D., Chemudugunta, C., Smyth, P., Steyvers, M.: Analyzing entities and topics in news articles using statistical topic models. In: Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B., Wang, F.-Y. (eds.) ISI 2006. LNCS, vol. 3975, pp. 93–104. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Perdisci, R., U, M.C.: VAMO: towards a fully automated malware clustering validity analysis. In: Annual Computer Security Applications Conference (ACSAC) (2012)

    Google Scholar 

  24. Pfoh, J., Schneider, C., Eckert, C.: Leveraging string kernels for malware detection. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873, pp. 206–219. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora. In: Conference on Empirical Methods in Natural Language Processing (2009)

    Google Scholar 

  26. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Workshop on New Challenges for NLP Frameworks (2010)

    Google Scholar 

  27. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification of malware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 108–125. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Roberts, J.-M.: Virus Share. https://virusshare.com/

  29. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining methods for detection of new malicious executables. In: Symposium on Security and Privacy (2001)

    Google Scholar 

  30. Stringhini, G., Egele, M., Zarras, A., Holz, T., Kruegel, C., Vigna, G.: B@bel: leveraging email delivery for spam mitigation. In: USENIX Security Symposium (2012)

    Google Scholar 

  31. Tegeler, F., Fu, X., Vigna, G., Kruegel, C.: Botfinder: finding bots in network traffic without deep packet inspection. In: International Conference on Emerging Networking Experiments and Technologies (CoNEXT) (2012)

    Google Scholar 

  32. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes. J. Am. Stat. Assoc. 101(476), 1566–1581 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. The MITRE Corporation. CRITS. https://crits.github.io/

  34. VirusTotal. File Statistics. https://www.virustotal.com/en/statistics/

  35. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1, 1–305 (2008)

    Article  MATH  Google Scholar 

  36. Wang, C., Paisley, J.W., Blei, D.M.: Online variational inference for the hierarchical Dirichlet process. In: International Conference on Artificial Intelligence and Statistics (2011)

    Google Scholar 

  37. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls: alternative data models. In: Symposium on Security and Privacy (1999)

    Google Scholar 

  38. Wicherski, G.: Pehash: a novel approach to fast malware clustering. In: USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET) (2009)

    Google Scholar 

  39. Xiao, H., Eckert, C.: Efficient online sequence prediction with side information. In: IEEE International Conference on Data Mining (ICDM) (2013)

    Google Scholar 

  40. Xiao, H., Stibor, T.: A supervised topic transition model for detecting malicious system call sequences. In: Workshop on Knowledge Discovery, Modeling and Simulation (2011)

    Google Scholar 

  41. Zarras, A., Papadogiannakis, A., Gawlik, R., Holz, T.: Automated generation of models for fast and precise detection of HTTP-based malware. In: Annual Conference on Privacy, Security and Trust (PST) (2014)

    Google Scholar 

  42. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. Adv. Neural Inf. Process. Syst. 16(16), 321–328 (2004)

    Google Scholar 

Download references

Acknowledgments

The research was supported by the German Federal Ministry of Education and Research under grant 16KIS0328 (IUNO) and by the Bavarian State Ministry of Education, Science and the Arts as part of the FORSEC research association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Kolosnjaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kolosnjaji, B., Zarras, A., Lengyel, T., Webster, G., Eckert, C. (2016). Adaptive Semantics-Aware Malware Classification. In: Caballero, J., Zurutuza, U., Rodríguez, R. (eds) Detection of Intrusions and Malware, and Vulnerability Assessment. DIMVA 2016. Lecture Notes in Computer Science(), vol 9721. Springer, Cham. https://doi.org/10.1007/978-3-319-40667-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40667-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40666-4

  • Online ISBN: 978-3-319-40667-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics