Abstract
Automatic malware classification is an essential improvement over the widely-deployed detection procedures using manual signatures or heuristics. Although there exists an abundance of methods for collecting static and behavioral malware data, there is a lack of adequate tools for analysis based on these collected features. Machine learning is a statistical solution to the automatic classification of malware variants based on heterogeneous information gathered by investigating malware code and behavioral traces. However, the recent increase in variety of malware instances requires further development of effective and scalable automation for malware classification and analysis processes.
In this paper, we investigate the topic modeling approaches as semantics-aware solutions to the classification of malware based on logs from dynamic malware analysis. We combine results of static and dynamic analysis to increase the reliability of inferred class labels. We utilize a semi-supervised learning architecture to make use of unlabeled data in classification. Using a nonparametric machine learning approach to topic modeling we design and implement a scalable solution while maintaining advantages of semantics-aware analysis. The outcomes of our experiments reveal that our approach brings a new and improved solution to the reoccurring problems in malware classification and analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
The Cuckoo Sandbox. https://www.cuckoosandbox.org/
VirusTotal. http://www.virustotal.com
Alvarez, V.M.: Yara. http://plusvic.github.io/yara/
Anderson, B., Storlie, C., Lane, T.: Improving malware classification: bridging the static/dynamic gap. In: Workshop on Security and Artificial Intelligence (AISec) (2012)
Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007)
Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-based malware clustering. In: ISOC Network and Distributed System Security Symposium (NDSS) (2009)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Chau, D.H., Nachenberg, C., Wilhelm, J., Wright, A., Faloutsos, C.: Polonium: tera-scale graph mining and inference for malware detection. In: SIAM International Conference on Data Mining (SDM) (2011)
Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using random projections and neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013)
Dumais, S.T.: Latent semantic analysis. Ann. Rev. Inf. Sci. Technol. 38(1), 188–230 (2004)
Dumitras, T., Shou, D.: Toward a standard benchmark for computer security research: the Worldwide Intelligence Network Environment (WINE). In: Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS) (2011)
Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd (1996)
Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1), 18–28 (2009)
Hanif, Z., Calhoun, T., Trost, J.: Binarypig: Scalable Static Binary Analysis Over Hadoop. Black Hat, USA (2013)
Hanif, Z., Lengyel, T.K., Webster, G.D.: Internet-Scale File Analysis. Black Hat, USA (2015)
Heller, K., Svore, K., Keromytis, A.D., Stolfo, S.: One class support vector machines for detecting anomalous windows registry accesses. In: Workshop on Data Mining for Computer Security (DMSEC) (2003)
Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for scalable triage and semantic analysis. In: Conference on Computer and Communications Security (CCS) (2011)
Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York (2004)
Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.: Scalability, fidelity and stealth in the Drakvuf dynamic malware analysis system. In: Annual Computer Security Applications Conference (ACSAC) (2014)
Leung, K., Leckie, C.: Unsupervised anomaly detection in network intrusion detection using clusters. In: Australasian Conference on Computer Science (2005)
Maxwell, K.: Maltrieve. https://github.com/krmaxwell/maltrieve
Newman, D., Chemudugunta, C., Smyth, P., Steyvers, M.: Analyzing entities and topics in news articles using statistical topic models. In: Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B., Wang, F.-Y. (eds.) ISI 2006. LNCS, vol. 3975, pp. 93–104. Springer, Heidelberg (2006)
Perdisci, R., U, M.C.: VAMO: towards a fully automated malware clustering validity analysis. In: Annual Computer Security Applications Conference (ACSAC) (2012)
Pfoh, J., Schneider, C., Eckert, C.: Leveraging string kernels for malware detection. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873, pp. 206–219. Springer, Heidelberg (2013)
Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora. In: Conference on Empirical Methods in Natural Language Processing (2009)
Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Workshop on New Challenges for NLP Frameworks (2010)
Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification of malware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 108–125. Springer, Heidelberg (2008)
Roberts, J.-M.: Virus Share. https://virusshare.com/
Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining methods for detection of new malicious executables. In: Symposium on Security and Privacy (2001)
Stringhini, G., Egele, M., Zarras, A., Holz, T., Kruegel, C., Vigna, G.: B@bel: leveraging email delivery for spam mitigation. In: USENIX Security Symposium (2012)
Tegeler, F., Fu, X., Vigna, G., Kruegel, C.: Botfinder: finding bots in network traffic without deep packet inspection. In: International Conference on Emerging Networking Experiments and Technologies (CoNEXT) (2012)
Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes. J. Am. Stat. Assoc. 101(476), 1566–1581 (2006)
The MITRE Corporation. CRITS. https://crits.github.io/
VirusTotal. File Statistics. https://www.virustotal.com/en/statistics/
Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1, 1–305 (2008)
Wang, C., Paisley, J.W., Blei, D.M.: Online variational inference for the hierarchical Dirichlet process. In: International Conference on Artificial Intelligence and Statistics (2011)
Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls: alternative data models. In: Symposium on Security and Privacy (1999)
Wicherski, G.: Pehash: a novel approach to fast malware clustering. In: USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET) (2009)
Xiao, H., Eckert, C.: Efficient online sequence prediction with side information. In: IEEE International Conference on Data Mining (ICDM) (2013)
Xiao, H., Stibor, T.: A supervised topic transition model for detecting malicious system call sequences. In: Workshop on Knowledge Discovery, Modeling and Simulation (2011)
Zarras, A., Papadogiannakis, A., Gawlik, R., Holz, T.: Automated generation of models for fast and precise detection of HTTP-based malware. In: Annual Conference on Privacy, Security and Trust (PST) (2014)
Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. Adv. Neural Inf. Process. Syst. 16(16), 321–328 (2004)
Acknowledgments
The research was supported by the German Federal Ministry of Education and Research under grant 16KIS0328 (IUNO) and by the Bavarian State Ministry of Education, Science and the Arts as part of the FORSEC research association.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Kolosnjaji, B., Zarras, A., Lengyel, T., Webster, G., Eckert, C. (2016). Adaptive Semantics-Aware Malware Classification. In: Caballero, J., Zurutuza, U., Rodríguez, R. (eds) Detection of Intrusions and Malware, and Vulnerability Assessment. DIMVA 2016. Lecture Notes in Computer Science(), vol 9721. Springer, Cham. https://doi.org/10.1007/978-3-319-40667-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-40667-1_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40666-4
Online ISBN: 978-3-319-40667-1
eBook Packages: Computer ScienceComputer Science (R0)