Why Paraconsistent Logics? | SpringerLink
Skip to main content

Why Paraconsistent Logics?

  • Chapter
  • First Online:
Towards Paraconsistent Engineering

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 110))

Abstract

In this chapter, we briefly review paraconsistent logics which are closely related to the topics in this book. We give an exposition of their history and formal aspects. We also address the importance of applications of paraconsistent logics to engineering.

Dedicated to Jair Minoro Abe for his 60th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In fact, in some systems of paraconsistent logic, like da Costa’s systems \(C_n\), the “good” propositions do satisfy this principle.

References

  1. Abe, J.M.: On the Foundations of Annotated Logics (in Portuguese), Ph.D. Thesis, University of São Paulo, Brazil (1992)

    Google Scholar 

  2. Abe, J.M., Akama, S., Nakamatsu, K.: Introduction to Annotated Logics. Springer, Heidelberg (2016)

    MATH  Google Scholar 

  3. Akama, S.: Resolution in constructivism. Logique et Analyse 120, 385–399 (1987)

    MathSciNet  Google Scholar 

  4. Akama, S.: Constructive predicate logic with strong negation and model theory. Notre Dame J. Formal Logic 29, 18–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akama, S.: On the proof method for constructive falsity. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 34, 385–392 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Akama, S.: Subformula semantics for strong negation systems. J. Philos. Logic 19, 217–226 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Akama, S.: Constructive Falsity: Foundations and Their Applications to Computer Science, Ph.D. Thesis, Keio University, Yokohama, Japan (1990)

    Google Scholar 

  8. Akama, S.: Nelson’s paraconsistent logics. Logic Logical Philos. 7, 101–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Akama, S., Abe, J.M., Nakamatsu, K.: Constructive discursive logic with strong negation. Logique et Analyse 215, 395–408 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Almukdad, A., Nelson, D.: Constructible falsity and inexact predicates. J. Symbolic Logic 49, 231–233 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Anderson, A., Belnap, N.: Entailment: The Logic of Relevance and Necessity I. Princeton University Press, Princeton (1976)

    Google Scholar 

  12. Anderson, A., Belnap, N., Dunn, J.: Entailment: The Logic of Relevance and Necessity II. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  13. Arieli, O., Avron, A.: Reasoning with logical bilattices. J. Logic Lang. Inform. 5, 25–63 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Arieli, O., Avron, A.: The value of fur values. Artif. Intell. 102, 97–141 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Arruda, A.I.: A survey of paraconsistent logic. In: Arruda, A., da Costa, N., Chuaqui, R. (eds.) Mathematical Logic in Latin America, pp. 1–41. North-Holland, Amsterdam (1980)

    Google Scholar 

  16. Asenjo, F.G.: A calculus of antinomies. Notre Dame J. Formal Logic 7, 103–105 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  17. Batens, D.: Dynamic dialectical logics. In: Priest, G., Routley, R. Norman, J. (eds.) Paraconsistent Logic: Essay on the Inconsistent, pp. 187–217. Philosophia Verlag, München (1989)

    Google Scholar 

  18. Batens, D.: Inconsistency-adaptive logics and the foundation of non-monotonic logics. Logique et Analyse 145, 57–94 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Batens, D.: A general characterization of adaptive logics. Logique et Analyse 173–175, 45–68 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Batens, D., Mortensen, C., Priest, G., Van Bendegem, J.-P. (eds.): Frontiers of Paraconsistent Logic. Research Studies Press, Baldock (2000)

    Google Scholar 

  21. Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multi-Valued Logic, pp. 8–37. Reidel, Dordrecht (1977)

    Google Scholar 

  22. Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy, pp. 30–55. Oriel Press (1977)

    Google Scholar 

  23. Beziau, J.-Y., Carnielli, W., Gabbay, D. (eds.): Handbook of Paraconsistency. College Publication, London (2007)

    MATH  Google Scholar 

  24. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theoret. Comput. Sci. 68, 135–154 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Carnielli, W.A., Marcos, J.: Tableau systems for logics of formal inconsistency. In: Abrabnia, H.R. (ed.), Proceedings of the 2001 International Conference on Artificial Intelligence, vol. II, pp. 848–852. CSREA Press (2001)

    Google Scholar 

  26. Carnielli, W.A., Coniglio, M.E., D’Ottaviano, I.M. (eds.): Paraconsistency: The Logical Way to the Inconsistent. Marcel Dekker, New York (2002)

    Google Scholar 

  27. Carnielli, W.A., Coniglio, M.E, Marcos, J.: Logics of formal inconsistency. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 14, 2nd edn, pp. 1–93. Springer, Heidelberg (2007)

    Google Scholar 

  28. da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame J. Formal Logic 15, 497–510 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. da Costa, N.C.A., Alves, E.H.: A semantical analysis of the calculi \(C_n\). Notre Dame J. Formal Logic 18, 621–630 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. da Costa, N.C.A., Abe, J.M., Subrahmanian, V.S.: Remarks on annotated logic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 37, 561–570 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. da Costa, N.C.A., Subrahmanian, V.S., Vago, C.: The paraconsistent logic \(P{\cal T}\). Zeitschrift für mathematische Logik und Grundlagen der Mathematik 37, 139–148 (1991)

    Google Scholar 

  32. Dunn, J.M.: Relevance logic and entailment. In: Gabbay, D., Gunthner, F. (eds.) Handbook of Philosophical Logic, vol. III, pp. 117–224. Reidel, Dordrecht (1986)

    Google Scholar 

  33. Fitting, M.: Bilattices and the semantics of logic programming. J. Logic Program. 11, 91–116 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fitting, M.: A theory of truth that prefers falsehood. J. Philos. Logic 26, 477–500 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ginsberg, M.: Multivalued logics. In: Proceedings of AAAI’86, pp. 243–247. Morgan Kaufman, Los Altos (1986)

    Google Scholar 

  36. Ginsberg, M.: Multivalued logics: a uniform approach to reasoning in AI. Comput. Intell. 4, 256–316 (1988)

    Google Scholar 

  37. Jaśkowski, S.: Propositional calculus for contradictory deductive systems (in Polish). Studia Societatis Scientiarun Torunesis, Sectio A 1, 55–77 (1948)

    Google Scholar 

  38. Jaśkowski, S.: On the discursive conjunction in the propositional calculus for inconsistent deductive systems (in Polish). Studia Societatis Scientiarun Torunesis, Sectio A 8, 171–172 (1949)

    Google Scholar 

  39. Kleene, S.: Introduction to Metamathematics. North-Holland, Amsterdam (1952)

    MATH  Google Scholar 

  40. Kripke, S.: Outline of a theory of truth. J. Philos. 72, 690–716 (1975)

    Article  MATH  Google Scholar 

  41. Kifer, M., Subrahmanian, V.S.: On the expressive power of annotated logic programs. In: Proceedings of the 1989 North American Conference on Logic Programming, pp. 1069–1089 (1989)

    Google Scholar 

  42. Kotas, J.: The axiomatization of S. Jaskowski’s discursive logic. Studia Logica 33, 195–200 (1974)

    Google Scholar 

  43. Łukasiewicz, J.: On 3-valued logic. In: McCall, S. (ed.) Polish Logic, pp. 16–18, Oxford University Press, Oxford, 1967

    Google Scholar 

  44. Nelson, D.: Constructible falsity. J. Symbolic Logic 14, 16–26 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nelson, D.: Negation and separation of concepts in constructive systems. In: Heyting, A. (ed.) Constructivity in Mathematics, pp. 208–225. North-Holland, Amsterdam (1959)

    Google Scholar 

  46. Priest, G.: Logic of paradox. J. Philos. Logic 8, 219–241 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  47. Priest, G.: Paraconsistent logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn, pp. 287–393. Kluwer, Dordrecht (2002)

    Google Scholar 

  48. Priest, G.: In Contradiction: A Study of the Transconsistent, 2nd edn. Oxford University Press, Oxford (2006)

    Google Scholar 

  49. Priest, G., Routley, R., Norman, J. (eds.): Paraconsistent Logic: Essays on the Inconsistent. Philosophia Verlag, München (1989)

    MATH  Google Scholar 

  50. Rico, G.O.: The annotated logics \(OP_{\rm BL}\). In: Carnielli, W., Coniglio, M., D’Ottaviano, I. (eds.) Paraconsistency: The Logical Way to the Inconsistent, pp. 411–433. Marcel Dekker, New York (2002)

    Google Scholar 

  51. Routley, R., Plumwood, V., Meyer, R.K., Brady, R: Relevant Logics and Their Rivals, vol. 1. Ridgeview, Atascadero (1982)

    Google Scholar 

  52. Subrahmanian, V.: On the semantics of quantitative logic programs. In: Proceeding of the 4th IEEE Symposium on Logic Programming, pp. 173–182 (1987)

    Google Scholar 

  53. van Fraassen, B.C.: Facts and tautological entailment. J. Philos. 66, 477–487 (1069)

    Article  Google Scholar 

  54. Vasil’ev, N.A.: Imaginary Logic (in Russian). Nauka, Moscow (1989)

    Google Scholar 

  55. Wansing, H.: The Logic of Information Structures. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiki Akama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akama, S., da Costa, N.C.A. (2016). Why Paraconsistent Logics?. In: Akama, S. (eds) Towards Paraconsistent Engineering. Intelligent Systems Reference Library, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-319-40418-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40418-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40417-2

  • Online ISBN: 978-3-319-40418-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics