Performance of an Energy Detector with Generalized Selection Combining for Spectrum Sensing | SpringerLink
Skip to main content

Performance of an Energy Detector with Generalized Selection Combining for Spectrum Sensing

  • Conference paper
  • First Online:
Cognitive Radio Oriented Wireless Networks (CrownCom 2016)

Abstract

Diversity reception schemes are well-known to have the ability to mitigate the adverse effects of multipath wireless channels. This paper analyzes the performance of an energy detector with generalized selection combining (GSC) over a Rayleigh fading channel and compares the results with those of the conventional diversity combining schemes such as, maximal-ratio combining (MRC) and the selection combining (SC). Novel closed-form expressions have been derived for the average detection probability over the independently, identically distributed (i.i.d) diversity paths. Receiver operating characteristics (ROCs) and average detection probability versus SNR curves have been presented for different scenarios of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adebola, E., Annamalai, A.: Unified analysis of energy detectors with diversity reception in generalised fading channels. IET Commun. 8(17), 3095–3104 (2014)

    Article  Google Scholar 

  2. Alouini, M.S., Simon, M.K.: An mgf-based performance analysis of generalized selection combining over rayleigh fading channels. IEEE Trans. Commun. 48(3), 401–415 (2000)

    Article  Google Scholar 

  3. Atapattu, S., Tellambura, C., Jiang, H.: Performance of an energy detector over channels with both multipath fading and shadowing. IEEE Trans. Wirel. Commun. 9(12), 3662–3670 (2010)

    Article  Google Scholar 

  4. Cui, G., Kong, L., Yang, X., Ran, D.: Two useful integrals involving generalised marcum q-function. Electron. Lett. 48(16), 1017–1018 (2012)

    Article  Google Scholar 

  5. Hamdi, K., Zeng, X.N., Ghrayeb, A., Letaief, K.: Impact of noise power uncertainty on cooperative spectrum sensing in cognitive radio systems. In: 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010), pp. 1–5, December 2010

    Google Scholar 

  6. Lu, C., Lans, W.: Approximate ber performance of generalized selection combining in nakagami-m fading. IEEE Commun. Lett. 5(6), 254–256 (2001)

    Article  Google Scholar 

  7. Ma, Y., Chai, C.C.: Unified error probability analysis for generalized selection combining in nakagami fading channels. IEEE J. Sel. Areas Commun. 18(11), 2198–2210 (2000)

    Article  Google Scholar 

  8. Nuttall, A.H.: Some Integrals Involving the \(Q_{M}\)-Functions. Naval Underwater Systems Center, New London (1974)

    Google Scholar 

  9. Theofilakos, P., Kanatas, A., Efthymoglou, G.: Performance of generalized selection combining receivers in k fading channels. IEEE Commun. Lett. 12(11), 816–818 (2008)

    Article  Google Scholar 

  10. Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. Commun. Surv. Tutorials 11(1), 116–130 (2009). IEEE

    Article  Google Scholar 

Download references

Acknowledgments

The work has been carried out under the project, “Mobile Broadband Service Support over Cognitive Radio Networks,” sponsored by Information Technology Research Academy (ITRA), Department of Electronics and Information Technology (DeitY), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deep Chandra Kandpal .

Editor information

Editors and Affiliations

Appendices

A Appendix

1.1 Evaluation of \(A_{1}\) in (10)

Using [8, (5)], \(A_{1}\) can be written as:

$$\begin{aligned} A_{1} = \left( {\begin{array}{c}L\\ L_{c}\end{array}}\right) \dfrac{1}{\overline{\gamma }^{L_{c}}(L_{c}-1)!}&\int _{0}^{\infty }\Bigg [ 1- \exp \left( -\dfrac{2\gamma _{\tiny {\text{ GSC }}} + \lambda }{2}\right) \sum _{n = N}^{\infty }\left( \dfrac{\sqrt{\lambda }}{\sqrt{2\gamma _{\tiny {\text{ GSC }}}}}\right) ^{n} \nonumber \\&\cdot I_{n}\left( \sqrt{2\gamma _{\tiny {\text{ GSC }}} \lambda }\right) \Bigg ] \gamma _{\tiny {\text{ GSC }}}^{L_{c}-1} \exp \left( -\dfrac{\gamma _{\tiny {\text{ GSC }}}}{\overline{\gamma }}\right) d\gamma _{\tiny {\text{ GSC }}} \end{aligned}$$
(16)

where, \(I_{n}(\cdot )\) is the modified Bessel function of order n. Using transformation and change of variable, (16) can be written as:

$$\begin{aligned} A_{1} =&2\left( {\begin{array}{c}L\\ L_{c}\end{array}}\right) \dfrac{1}{\overline{\gamma }^{L_{c}}(L_{c}-1)!}\int _{0}^{\infty }Q_{N}\left( \sqrt{2}\gamma _{\tiny {\text{ GSC }}}, \sqrt{\lambda }\right) \gamma _{\tiny {\text{ GSC }}}^{\left( 2L_{c}-1\right) } \exp \left( -\dfrac{\gamma _{\tiny {\text{ GSC }}}^{2}}{\overline{\gamma }}\right) d\gamma _{\tiny {\text{ GSC }}} \nonumber \\ =&2\left( {\begin{array}{c}L\\ L_{c}\end{array}}\right) \dfrac{1}{\overline{\gamma }^{L_{c}}(L_{c}-1)!}\cdot G_{N} \end{aligned}$$
(17)

From [8, (29)], the above equation becomes equal to (13) where, \(G_{1}\) can be defined as [8, (25)]:

$$\begin{aligned} G_{1} = \dfrac{2^{L_{c}-1}\left( L_{c}-1\right) !}{\left( 2/\overline{\gamma }\right) ^{L_{c}}}\left( \dfrac{\overline{\gamma }}{1+\overline{\gamma }}\right) \exp \left( -\dfrac{\lambda }{2\left( 1+\overline{\gamma }\right) }\right)&\sum _{k = 0}^{L_{c}-1} \epsilon _{k} \left( \dfrac{1}{1+\overline{\gamma }}\right) ^{k} \nonumber \\&\cdot L_{k}\left( -\dfrac{\lambda \overline{\gamma }}{2\left( 1+\overline{\gamma }\right) }\right) \end{aligned}$$
(18)

where,

$$\begin{aligned} \epsilon _{k}\equiv {\left\{ \begin{array}{ll} 1;&{} k<L_{c}-1\\ 1+\dfrac{1}{\overline{\gamma }};&{} k = L_{c}-1 \end{array}\right. } \end{aligned}$$
(19)

and \(L_{k}(\cdot )\) is the Laguerre polynomial of degree k.

B Appendix

1.1 Evaluation of \(A_{2}\) in (11)

From (11), \(A_{2}\) can be given as:

$$\begin{aligned} A_{2} =&\left( {\begin{array}{c}L\\ L_{c}\end{array}}\right) \dfrac{1}{\overline{\gamma }}\sum _{l = 1}^{L - L_{c}}(-1)^{L_{c}-l+1}\left( {\begin{array}{c}L-L_{c}\\ l\end{array}}\right) \left( \dfrac{L_{c}}{l}\right) ^{L_{c}-1} \int _{0}^{\infty }\Bigg [ 1 - \exp \left( -\dfrac{2\gamma _{\tiny {\text{ GSC }}}+\lambda }{2}\right) \nonumber \\&\cdot \sum _{n= N}^{\infty }\left( \dfrac{\sqrt{\lambda }}{\sqrt{2\gamma }}\right) ^{n} I_{n}\left( \sqrt{2\gamma _{\tiny {\text{ GSC }}}\lambda }\right) \Bigg ] \exp \left[ -\dfrac{\gamma _{\tiny {\text{ GSC }}}}{\overline{\gamma }}\left( 1+\dfrac{l}{L_{c}}\right) \right] d\gamma _{\tiny {\text{ GSC }}} \nonumber \\ =&2 \left( {\begin{array}{c}L\\ L_{c}\end{array}}\right) \dfrac{1}{\overline{\gamma }}\sum _{l = 1}^{L - L_{c}}(-1)^{L_{c}-l+1}\left( {\begin{array}{c}L-L_{c}\\ l\end{array}}\right) \left( \dfrac{L_{c}}{l}\right) ^{L_{c}-1} \int _{0}^{\infty }Q_{N}\left( \sqrt{2}\gamma _{\tiny {\text{ GSC }}}, \sqrt{\lambda }\right) \nonumber \\&\cdot \exp \left[ -\dfrac{\gamma _{\tiny {\text{ GSC }}}^{2}}{\overline{\gamma }}\left( 1+\dfrac{l}{L_{c}}\right) \right] \gamma _{\tiny {\text{ GSC }}} d\gamma _{\tiny {\text{ GSC }}} \nonumber \\ =&2 \left( {\begin{array}{c}L\\ L_{c}\end{array}}\right) \dfrac{1}{\overline{\gamma }}\sum _{l = 1}^{L - L_{c}}(-1)^{L_{c}-l+1}\left( {\begin{array}{c}L-L_{c}\\ l\end{array}}\right) \left( \dfrac{L_{c}}{l}\right) ^{L_{c}-1}\cdot D_{N} \end{aligned}$$
(20)

From [8, (29)], the above equation becomes equal to (14) where, \(D_{1}\) can be defined as [8, (25)]:

$$\begin{aligned} D_{1} =&\dfrac{\left( \overline{\gamma }L_{c}\right) ^{2}}{2\left( l+Lc\right) \left( l+L_{c}+\overline{\gamma }L_{c}\right) } \exp \left( -\dfrac{\lambda \left( l+L_{c}\right) }{2\left( l+L_{c}+\overline{\gamma }L_{c}\right) }\right) \cdot \Bigg [\left( 1+\dfrac{l+L_{c}}{\overline{\gamma }L_{c}}\right) \Bigg ] \end{aligned}$$
(21)

In the above equation, it is important to note that the value of Laguerre polynomial for order 0 becomes 1.

C Appendix

1.1 Evaluation of \(A_{3}\) in (12)

Following the same analogy as in Appendix A, (12) can be written as:

$$\begin{aligned} A_{3} =&-2 \left( {\begin{array}{c}L\\ L_{c}\end{array}}\right) \dfrac{1}{\overline{\gamma }}\sum _{l = 1}^{L - L_{c}}(-1)^{L_{c}-l+1} \left( {\begin{array}{c}L-L_{c}\\ l\end{array}}\right) \left( \dfrac{L_{c}}{l}\right) ^{L_{c}-1} \cdot \sum _{m = 0}^{L_{c}-2}\dfrac{1}{m!}\left( \dfrac{-l}{L_{c}\overline{\gamma }}\right) ^{m} \nonumber \\&\cdot \int _{0}^{\infty }Q_{N}\left( \sqrt{2}\gamma _{\tiny {\text{ GSC }}},\sqrt{\lambda }\right) \exp \left( -\gamma _{\tiny {\text{ GSC }}}^{2}/\overline{\gamma }\right) \gamma _{\tiny {\text{ GSC }}}^{2m+1}d\gamma _{\tiny {\text{ GSC }}} \nonumber \\ =&-2 \left( {\begin{array}{c}L\\ L_{c}\end{array}}\right) \dfrac{1}{\overline{\gamma }}\sum _{l = 1}^{L - L_{c}}(-1)^{L_{c}-l+1} \left( {\begin{array}{c}L-L_{c}\\ l\end{array}}\right) \left( \dfrac{L_{c}}{l}\right) ^{L_{c}-1} \cdot \sum _{m = 0}^{L_{c}-2}\dfrac{1}{m!}\left( \dfrac{-l}{L_{c}\overline{\gamma }}\right) ^{m} \cdot J_{N} \end{aligned}$$
(22)

From [8, (29)], the above equation becomes equal to (15) where, \(J_{1}\) can be defined as [8, (25)]:

$$\begin{aligned} J_{1} =&\dfrac{2^{m}m!}{\left( 2/\overline{\gamma }\right) ^{(m+1)}}\dfrac{\overline{\gamma }}{1+\overline{\gamma }}\exp \left( -\dfrac{\lambda }{2\left( 1+\overline{\gamma }\right) }\right) \sum _{k = 0}^{m}\phi _{k}\left( \dfrac{1}{1+\overline{\gamma }}\right) ^{k}L_{k}\left( -\dfrac{\lambda \overline{\gamma }}{2\left( 1+\overline{\gamma }\right) }\right) \end{aligned}$$
(23)

where,

$$\begin{aligned} \phi _{k}\equiv {\left\{ \begin{array}{ll} 1;&{} k<m\\ 1+\dfrac{1}{\overline{\gamma }};&{} k = m \end{array}\right. } \end{aligned}$$
(24)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Kandpal, D.C., Kumar, V., Gangopadhyay, R., Debnath, S. (2016). Performance of an Energy Detector with Generalized Selection Combining for Spectrum Sensing. In: Noguet, D., Moessner, K., Palicot, J. (eds) Cognitive Radio Oriented Wireless Networks. CrownCom 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 172. Springer, Cham. https://doi.org/10.1007/978-3-319-40352-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40352-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40351-9

  • Online ISBN: 978-3-319-40352-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics