Kinect and Episodic Reasoning for Human Action Recognition | SpringerLink
Skip to main content

Kinect and Episodic Reasoning for Human Action Recognition

  • Conference paper
  • First Online:
Distributed Computing and Artificial Intelligence, 13th International Conference

Abstract

This paper presents a method for rational behaviour recognition that combines vision-based pose estimation with knowledge modeling and reasoning. The proposed method consists of two stages. First, RGB-D images are used in the estimation of the body postures. Then, estimated actions are evaluated to verify that they make sense. This method requires rational behaviour to be exhibited. To comply with this requirement, this work proposes a rational RGB-D dataset with two types of sequences, some for training and some for testing. Preliminary results show the addition of knowledge modeling and reasoning leads to a significant increase of recognition accuracy when compared to a system based only on computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chaaraoui, A.A., Padilla-Lopez, J.R., Florez-Revuelta, F.: Fusion of skeletal and silhouette-based features for human action recognition with rgb-d devices. In: The IEEE International Conference on Computer Vision (ICCV) Workshops, December 2013

    Google Scholar 

  2. Cantarero, R., Santofimia, M.J., Nebel, J.-C., Revuelta, F.F., del Rincon, J.M., Lopez, J.C.: KinBehR: Kinect for Behaviour Recognition. http://arco.esi.uclm.es/public/prj/KinbehR/KinbehrDataset_v2.zip

  3. Chaaraoui, A.A., Climent-Pérez, P., Flórez-Revuelta, F.: An efficient approach for multi-view human action recognition based on bag-of-key-poses. In: Proceedings of the Third International Conference on Human Behavior Understanding, HBU 2012, pp. 29–40. Springer, Heidelberg (2012)

    Google Scholar 

  4. Chaaraoui, A.A., Climent-Pérez, P., Flórez-Revuelta, F.: Silhouette-based human action recognition using sequences of key poses. Pattern Recognition Letters 34(15), 1799–1807 (2013)

    Google Scholar 

  5. Chaaraoui, A.A., Florez-Revuelta, F.: Adaptive human action recognition with an evolving bag of key poses. IEEE Trans. on Auton. Ment. Dev. 6(2), 139–152 (2014)

    Article  Google Scholar 

  6. Chaaraoui, A.A., Flórez-Revuelta, F., Climent-Pérez, P.: Bag of key poses (2015). https://github.com/DAIGroup/BagOfKeyPoses

  7. Climent-Pérez, P., Chaaraoui, A.A., Padilla-López, J.R., Flórez-Revuelta, F.: Optimal joint selection for skeletal data from RGB-D devices using a genetic algorithm. In: Advances in Computational Intelligence - 11th Mexican International Conference on Artificial Intelligence, MICAI 2012, Revised Selected Papers, Part II, San Luis Potosí, Mexico, October 27 - November 4, pp. 163–174 (2012)

    Google Scholar 

  8. Davidson, D.: Actions, reasons, and causes. The Journal of Philosophy 60(23), 685–700 (1963)

    Article  Google Scholar 

  9. del Rincón, J.M., Santofimia, M.J., Nebel, J.-C.: Common-sense reasoning for human action recognition. Pattern Recogn. Lett. 34(15), 1849–1860 (2013)

    Article  Google Scholar 

  10. Edwards, C.: Decoding the language of human movement. Commun. ACM 57(12), 12–14 (2014)

    Article  Google Scholar 

  11. Fahlman, S.E. : The Scone knowledge-base project (2016). http://www.cs.cmu.edu/~sef/scone/ (retrieved on January 20, 2016)

  12. Farooq, A., Won, C.S.: A survey of human action recognition approaches that use an rgb-d sensor. IEIE Transactions on Smart Processing and Computing 4(4), 281–290 (2015)

    Article  Google Scholar 

  13. Gonen, M., Alpaydin, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Communications Surveys Tutorials 15(3), 1192–1209 (2013)

    Article  Google Scholar 

  15. Lei, J., Ren, X., Fox, D.: Fine-grained kitchen activity recognition using rgb-d. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp 2012, pp. 208–211. ACM New York (2012)

    Google Scholar 

  16. Mojidra, H.S., Borisagar, V.H.: A literature survey on human activity recognition via hidden markov model. In: IJCA Proceedings on International Conference on Recent Trends in Information Technology and Computer Science 2012, ICRTITCS vol. (6), pp. 1–5, February 2013

    Google Scholar 

  17. Santofimia, M.J., Martinez-del Rincon, J., Nebel, J.-C.: Episodic reasoning for vision-based human action recognition. The Scientific World Journal (2014)

    Google Scholar 

  18. Shimada, A., Kondo, K., Deguchi, D., Morin, G., Stern, H.: Kitchen scene context based gesture recognition: A contest in ICPR2012. In: Advances in Depth Image Analysis and Applications - International Workshop, WDIA 2012, Revised Selected and Invited Papers, Tsukuba, Japan, November 11, pp. 168–185 (2012)

    Google Scholar 

  19. Vieira, A., Nascimento, E., Oliveira, G., Liu, Z., Campos, M.: Stop: Space-time occupancy patterns for 3d action recognition from depth. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. LNCS, vol. 7441, pp. 252–259. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Wang, J., Liu, Z., Chorowski, J., Chen, Z., Wu, Y.: Robust 3d action recognition with random occupancy patterns. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 872–885. Springer, Heidelberg (2012)

    Google Scholar 

  21. Weinland, D., Özuysal, M., Fua, P.: Making action recognition robust to occlusions and viewpoint changes. In: European Conference on Computer Vision (2010)

    Google Scholar 

  22. Wu, Y.: Mining actionlet ensemble for action recognition with depth cameras. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012, pp. 1290–1297. IEEE Computer Society, Washington, DC (2012)

    Google Scholar 

  23. Xia, L., Chen, C.-C., Aggarwal, J.K.: View invariant human action recognition using histograms of 3d joints. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, June 16-21, pp. 20–27. IEEE (2012)

    Google Scholar 

  24. Yang, X., Tian, Y.: Effective 3d action recognition using eigenjoints. J. Vis. Comun. Image Represent. 25(1), 2–11 (2014)

    Article  MathSciNet  Google Scholar 

  25. Yang, X., Zhang, C., Tian, Y.: Recognizing actions using depth motion maps-based histograms of oriented gradients. In: Proceedings of the 20th ACM International Conference on Multimedia, MM 2012, pp. 1057–1060. ACM, New York (2012)

    Google Scholar 

  26. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimedia 19(2), 4–10 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Cantarero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cantarero, R. et al. (2016). Kinect and Episodic Reasoning for Human Action Recognition. In: Omatu, S., et al. Distributed Computing and Artificial Intelligence, 13th International Conference. Advances in Intelligent Systems and Computing, vol 474. Springer, Cham. https://doi.org/10.1007/978-3-319-40162-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40162-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40161-4

  • Online ISBN: 978-3-319-40162-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics