Abstract
In the paper, an optimization of \(\alpha \)-Association rules constructed by greedy algorithm is proposed. It allows us to decrease the number of rules and obtain short rules, what is important from the point of view of knowledge representation. Experimental results for data sets from UCI Machine Learning Respository are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 487–499. Morgan Kaufmann (1994)
Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD ’93, pp. 207–216. ACM (1993)
Borgelt, C.: Simple algorithms for frequent item set mining. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds.) Advances in Machine Learning II, Studies in Computational Intelligence, vol. 263, pp. 351–369. Springer, Berlin Heidelberg (2010)
Borgelt, C., Kruse, R.: Induction of association rules: Apriori implementation. 15th Conference on Computational Statistics (Compstat 2002. Berlin, Germany), pp. 395–400. Physica Verlag, Heidelberg (2002)
Feige, U.: A threshold of \(\ln n\) for approximating set cover. In: Leighton, F.T. (ed.) Journal of the ACM (JACM), vol. 45, pp. 634–652. ACM New York (1998)
Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)
Herawan, T., Deris, M.M.: A soft set approach for association rules mining. Knowled.-Based Syst. 24(1), 186–195 (2011)
Kozak, J., Boryczka, U.: Multiple boosting in the ant colony decision forest meta-classifier. Knowled.-Based Syst. 75, 141–151 (2015)
Lichman, M.: UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/. Accessed Feb 2016
Moshkov, M.J., Skowron, A., Suraj, Z.: On minimal rule sets for almost all binary information systems. Fundam. Inform. 80(1–3), 247–258 (2007)
Moshkov, M.J., Piliszczuk, M., Zielosko, B.: On construction of partial association rules. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT, LNCS, vol. 5589, pp. 176–183. Springer (2009)
Moshkov, M.J., Piliszczuk, M., Zielosko, B.: Greedy algorithm for construction of partial association rules. Fundam. Inform. 92(3), 259–277 (2009)
Nguyen, H.S., Ślȩzak, D.: Approximate reducts and association rules - correspondence and complexity results. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC, LNCS, vol. 1711, pp. 137–145. Springer (1999)
Park, J.S., Chen, M.S., Yu, P.S.: An effective hash based algorithm for mining association rules. In: Carey, M.J., Schneider, D.A. (eds.) SIGMOD Conference, pp. 175–186. ACM Press (1995)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)
Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)
Savasere, A., Omiecinski, E., Navathe, S.B.: An efficient algorithm for mining association rules in large databases. In: Dayal, U., Gray, P.M.D., Nishio, S. (eds.) VLDB, pp. 432–444. Morgan Kaufmann (1995)
Skowron, A.: Rough sets in KDD - plenary talk. In: Shi, Z., Faltings, B., Musen, M. (eds.) Proceedings of the 16th IFIP, pp. 1–14. World Computer Congress, Publishing House of Electronic Industry (2000)
Slavík, P.: A tight analysis of the greedy algorithm for set cover. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. pp. 435–441. ACM New York (1996)
Stańczyk, U.: Selection of decision rules based on attribute ranking. J. Intell. Fuzzy Syst. 29(2), 899–915 (2015)
Stefanowski, J., Vanderpooten, D.: Induction of decision rules in classification and discovery-oriented perspectives. Int. J. Intell. Syst. 16(1), 13–27 (2001)
Tkacz, M.A.: Artificial neural networks in incomplete data sets processing. In: Kopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) IIS: IIPWM’05. pp. 577–584. Advances in Soft Computing, Springer (2005)
Wieczorek, A., Słowiński, R.: Generating a set of association and decision rules with statistically representative support and anti-support. Inf. Sci. 277, 56–70 (2014)
Zielosko, B.: Greedy algorithm for construction of partial association rules. Studia Inform. 31(2A), 225–236 (2010) (in Polish)
Zielosko, B.: Global optimization of exact association rules relative to coverage. In: Kryszkiewicz, M., Bandyopadhyay, S., Rybiński, H., Pal, S.K. (eds.) PReMI 2015. LNCS, vol. 9124, pp. 428–437. Springer (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Zielosko, B., Robaszkiewicz, M. (2016). Greedy Algorithm for Optimization of Association Rules Relative to Length. In: Czarnowski, I., Caballero, A., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2016. IDT 2016. Smart Innovation, Systems and Technologies, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-39630-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-39630-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39629-3
Online ISBN: 978-3-319-39630-9
eBook Packages: EngineeringEngineering (R0)