Energy Planning Decision-Making Under Uncertainty Based on the Evidential Reasoning Approach | SpringerLink
Skip to main content

Energy Planning Decision-Making Under Uncertainty Based on the Evidential Reasoning Approach

  • Conference paper
  • First Online:
Highlights of Practical Applications of Scalable Multi-Agent Systems. The PAAMS Collection (PAAMS 2016)

Abstract

In the last two decades, energy planning decision-making (EPDM), especially the evaluation and prioritization of renewable energy sources (RES), has attracted significant attention. The decision-making process is aligned with several sources that can be uncertain, including incomplete information, limited domain knowledge from decision-makers, and failures to provide accurate judgments from experts. In this study, the Evidential Reasoning (ER) approach is developed to manage the expanding complexities and uncertainties in assessment problems. The ER approach is employed as a multiple criteria framework to assess the appropriateness regarding the use of different renewable energy technologies. A case study is provided to illustrate the implementation process. Results show that using the ER approach when assessing the sustainability of different RES under uncertainty allows providing robust decisions, which brings out a more accurate, effective, and better-informed EPDM tool to conduct the evaluation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Başar, Ö., Uğurlu, S., Kahraman, C.: Assessment of green energy alternatives using fuzzy ANP. In: Cavallaro, F. (ed.) Assessment and Simulation Tools for Sustainable Energy Systems. Green Energy and Technology Series, vol. 129, pp. 55–77. Springer, London (2013)

    Chapter  Google Scholar 

  2. Oberti, P., Muselli, M., Haurant, P.: Photovoltaic plants selection on an insular grid using multi-criteria outranking tools: application in Corsica Island (France). In: Cavallaro, F. (ed.) Assessment and Simulation Tools for Sustainable Energy Systems. Green Energy and Technology Series, vol. 129, pp. 27–54. Springer, London (2013)

    Chapter  Google Scholar 

  3. Banos, R., Manzano-Agugliaro, F., Montoya, F.G., Gil, C., Alcayde, A., Gómez, J.: Optimization methods applied to renewable and sustainable energy: a review. Renew. Sustain. Energy Rev. 15(4), 1753–1766 (2011). Elsevier

    Article  Google Scholar 

  4. Pohekar, S.D., Ramachandran, M.: Application of multi-criteria decision making to sustainable energy planning—a review. Renew. Sustain. Energy Rev. 8(4), 365–381 (2004). Elsevier

    Article  Google Scholar 

  5. Wang, J.J., Jing, Y.Y., Zhang, C.F., Zhao, J.H.: Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 13(9), 2263–2278 (2009). Elsevier

    Article  Google Scholar 

  6. Taha, R.A., Daim, T.: Multi-criteria applications in renewable energy analysis, a literature review. In: Daim, T., Oliver, T., Kim, J. (eds.) Research and Technology Management in the Electricity Industry, pp. 17–30. Springer, London (2013)

    Chapter  Google Scholar 

  7. Strantzali, E., Aravossis, K.: Decision making in renewable energy investments: a review. Renew. Sustain. Energy Rev. 55, 885–898 (2016). Elsevier

    Article  Google Scholar 

  8. Troldborg, M., Heslop, S., Hough, R.L.: Assessing the sustainability of renewable energy technologies using multi-criteria analysis: suitability of approach for national-scale assessments and associated uncertainties. Renew. Sustain. Energy Rev. 39, 1173–1184 (2014). Elsevier

    Article  Google Scholar 

  9. Kabak, Ö., Cinar, D., Hoge, G.Y.: A cumulative belief degree approach for prioritization of energy sources: case of Turkey. In: Cavallaro, F. (ed.) Assessment and Simulation Tools for Sustainable Energy Systems, pp. 129–151. Springer, London (2013)

    Chapter  Google Scholar 

  10. Suganthi, L., Iniyan, S., Samuel, A.A.: Applications of fuzzy logic in renewable energy systems–a review. Renew. Sustain. Energy Rev. 48, 585–607 (2015). Elsevier

    Article  Google Scholar 

  11. Kaya, T., Kahraman, C.: Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: the case of Istanbul. Energy 35(6), 2517–2527 (2010). Elsevier

    Article  MathSciNet  Google Scholar 

  12. Tasri, A., Susilawati, A.: Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia. Sustain. Energy Technol. Assessments 7, 34–44 (2014). Elsevier

    Article  Google Scholar 

  13. Shafiee, M.: A fuzzy analytic network process model to mitigate the risks associated with offshore wind farms. Expert Syst. Appl. 42(4), 2143–2152 (2015). Elsevier

    Article  Google Scholar 

  14. Jiang, J., Li, X., Zhou, Z.J., Xu, D.L., Chen, Y.W.: Weapon system capability assessment under uncertainty based on the evidential reasoning approach. Expert Syst. Appl. 38(11), 13773–13784 (2011). Elsevier

    Google Scholar 

  15. Yang, J.B., Sen, P.: A general multi-level evaluation process for hybrid MADM with uncertainty. IEEE Trans. Syst. Man Cybern. 24, 1458–1473 (1994). IEEE

    Article  Google Scholar 

  16. Yang, J.B., Singh, M.G.: An evidential reasoning approach for multiple attribute decision making with uncertainty. IEEE Trans. Syst. Man Cybern. 24, 1–18 (1994). IEEE

    Article  Google Scholar 

  17. Yang, J.B., Wang, Y.M., Xu, D.L., Chin, K.S.: The evidential reasoning approach for MCDA under both probabilistic and fuzzy uncertainties. Eur. J. Oper. Res. 171, 309–343 (2006). Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, J.B., Xu, D.L.: On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 32(3), 289–304 (2002). IEEE

    Article  Google Scholar 

  19. Sellak, H., Ouhbi, B., Frikh, B.: Towards an intelligent decision support system for renewable energy management. In: The 15th International Conference on Intelligent systems Design and Applications. IEEE, Marrakesh (2015)

    Google Scholar 

  20. Xu, D.L.: Assessment of nuclear waste repository options using the ER approach. Int. J. Inf. Technol. Decis. Making 8(03), 581–607 (2009). World scientific

    Article  Google Scholar 

  21. Shafer, G.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  22. Wang, Y.M., Yang, J.B., Xu, D.L.: Environmental impact assessment using the evidential reasoning approach. Eur. J. Oper. Res. 174(3), 1885–1913 (2006). Elsevier

    Article  MATH  Google Scholar 

  23. Wang, Y.M., Elhag, T.M.: Evidential reasoning approach for bridge condition assessment. Expert Syst. Appl. 34(1), 689–699 (2008). Elsevier

    Article  Google Scholar 

  24. Kong, G., Xu, D.L., Yang, J.B., Ma, X.: Combined medical quality assessment using the evidential reasoning approach. Expert Syst. Appl. 42(13), 5522–5530 (2015). Elsevier

    Article  Google Scholar 

  25. Stein, E.W.: A comprehensive multi-criteria model to rank electric energy production technologies. Renew. Sustain. Energy Rev. 22, 640–654 (2013). Elsevier

    Article  Google Scholar 

  26. Scottish Government: 2020 Renewable Route Map for Scotland—Update. Scottish Government, Edinburgh (2012)

    Google Scholar 

  27. Zhang, Z.J., Yang, J.B., Xu, D.L.: A hierarchical analysis model for multiobjective decision making. In: Analysis, Design and Evaluation of Man–Machine System 1989 (Selected Papers from the 4th IFAC/IFIP/IFORS/IEA Conference, Xian, PR China, September 1989), Pergamon, Oxford, UK, 1990, pp. 13–18 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Sellak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sellak, H., Ouhbi, B., Frikh, B. (2016). Energy Planning Decision-Making Under Uncertainty Based on the Evidential Reasoning Approach. In: Bajo, J., et al. Highlights of Practical Applications of Scalable Multi-Agent Systems. The PAAMS Collection. PAAMS 2016. Communications in Computer and Information Science, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-319-39387-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39387-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39386-5

  • Online ISBN: 978-3-319-39387-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics