RoughCut–New Approach to Segment High-Resolution Images | SpringerLink
Skip to main content

RoughCut–New Approach to Segment High-Resolution Images

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9693))

Included in the following conference series:

  • 1183 Accesses

Abstract

We introduce a texture-based modification of the GrabCut algorithm that significantly improves its performance for high-resolution images but with a slight decrease in accuracy. This consists of five steps: expansion, convolution, shrinkage, GrabCut of the shrunk image, and enlargement. The results showed that modified algorithm is three times faster than the original one. At the same time, there is no significant difference between the average F1-measures obtained for both algorithms in case of high-resolution images. Therefore, it can be successfully used in semi-automatic segmentation of such images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM T Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  2. Greig, D., Porteous, B., Seheult, A.: Grabcut: exact maximum a posteriori estimation for binary images. J. Roy. Stat. Soc. Ser. B (Methodol.) 51, 271–279 (1989)

    Google Scholar 

  3. Roy, S.: Grabcut: stereo without epipolar lines: a maximum-flow formulation. Int. J. Comput. Vis. 34(2–3), 147–161 (1999)

    Article  Google Scholar 

  4. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer Science and Business Media, London (2010)

    MATH  Google Scholar 

  5. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604. IEEE Press (2009)

    Google Scholar 

  6. Talbot, J., Xu, X.: Implementing GrabCut. Brigham Young University, Citeseer, Provo (2006)

    Google Scholar 

  7. Schmid, C.: Constructing models for content-based image retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 11–39. IEEE Press (2001)

    Google Scholar 

  8. Zieliński, B., Skomorowski, M.: Schmid filter and inpainting in computer-aided erosions and osteophytes detection based on hand radiographs. In: Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) CORES 2015. AISC, vol. 403, pp. 511–519. Springer, Switzerland (2015)

    Chapter  Google Scholar 

  9. Burrus, C., Parks, T.: DFT/FFT and Convolution Algorithms: Theory and Implementation. Wiley, Inc., New York (1991)

    MATH  Google Scholar 

  10. Outex Texture Database. http://www.outex.oulu.fi

  11. Lems Brown Database. http://www.lems.brown.edu

  12. Zeppelzauer, M., Zieliński, B., Juda, M., Seidl, M.: Topological Descriptors for 3D Surface Analysis (2016). arXiv preprint arXiv:1601.06057

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Zieliński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Babiuch, M., Zieliński, B., Skomorowski, M. (2016). RoughCut–New Approach to Segment High-Resolution Images. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9693. Springer, Cham. https://doi.org/10.1007/978-3-319-39384-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39384-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39383-4

  • Online ISBN: 978-3-319-39384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics