Abstract
Landmarks are unique points that can be located on every face. Facial landmarks typically recognized by people are correlated with anthropomorphic points. Our purpose is to employ in 3D face recognition such landmarks that are easy to interpret. Face understanding is construed as identification of face characteristic points with automatic labeling of them. In this paper, we apply methods based on Self Organizing Maps to understand 3D faces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bas, E.: The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting. J. Artif. Intell. Soft Comput. Res. 6(1), 5–11 (2016)
Bilski, J., Smolag, J.: Parallel architectures for learning the RTRN and elman dynamic neural networks. IEEE Trans. Parallel Distrib. Syst. 26(9), 2561–2570 (2015)
Bilski, J., Smoląg, J., Żurada, J.M.: Parallel approach to the Levenberg-Marquardt learning algorithm for feedforward neural networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part I. LNCS, vol. 9119, pp. 3–14. Springer, Heidelberg (2015)
Chen, M., Ludwig, S.A.: Particle swarm optimization based fuzzy clustering approach to identify optimal number of clusters. J. Artif. Intell. Soft Comput. Res. 4(1), 43–56 (2014)
Chu, J.L., Krzyźak, A.: The recognition of partially occluded objects with support vector machines, convolutional neural networks and deep belief networks. J. Artif. Intell. Soft Comput. Res. 4(1), 5–19 (2014)
Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks and optimal linear predictors. Sig. Proc. Image Comm. 15(6), 559–565 (2000)
Faltemier, T., Bowyer, K., Flynn, P.: Rotated profile signatures for robust 3d feature detection. In: 8th IEEE International Conference on Automatic Face Gesture Recognition, FG 2008, pp. 1–7, September 2008
Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R.: Content-based image indexing by data clustering and inverse document frequency. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B. (eds.) BDAS 2014. CCIS, vol. 424, pp. 374–383. Springer, Heidelberg (2014)
Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R., Voloshynovskiy, S.: From single image to list of objects based on edge and blob detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 605–615. Springer, Heidelberg (2014)
Kitajima, R., Kamimura, R.: Accumulative information enhancement in the self-organizing maps and its application to the analysis of mission statements. J. Artif. Intell. Soft Comput. Res. 5(3), 161–176 (2015)
Knop, M., Kapuściński, T., Mleczko, W.K.: Video key frame detection based on the restricted boltzmann machine. J. Appl. Math. Comput. Mech. 14(3), 49–58 (2015)
Korytkowski, M., Nowicki, R., Scherer, R.: Neuro-fuzzy rough classifier ensemble. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 817–823. Springer, Heidelberg (2009)
Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)
Laskowski, L.: A novel hybrid-maximum neural network in stereo-matching process. Neural Comput. Appl. 23(7–8), 2435–2450 (2013)
Laskowski, Ł., Jelonkiewicz, J., Hayashi, Y.: Extensions of hopfield neural networks for solving of stereo-matching problem. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 59–71. Springer, Heidelberg (2015)
Laskowski, Ł., Laskowska, M., Jelonkiewicz, J., Boullanger, A.: Molecular approach to hopfield neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 72–78. Springer, Heidelberg (2015)
Lei, Y., Bennamoun, M., Hayat, M., Guo, Y.: An efficient 3D face recognition approach using local geometrical signatures. Pattern Recogn. 47(2), 509–524 (2014)
Li, H., Huang, D., Morvan, J.M., Wang, Y., Chen, L.: Towards 3d face recognition in the real: a registration-free approach using fine-grained matching of 3d keypoint descriptors. Int. J. Comput. Vis. 113(2), 128–142 (2015)
Mleczko, W.K., Kapuscinski, T., Nowicki, R.K.: Rough deep belief network - application to incomplete handwritten digits pattern classification. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2015. CCIS, vol. 538, pp. 400–411. Springer International Publishing, Switzerland (2015)
Pabiasz, S., Starczewski, J.T., Marvuglia, A.: SOM vs FCM vs PCA in 3D face recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part II. LNCS, vol. 9120, pp. 120–129. Springer, Heidelberg (2015)
Pabiasz, S., Starczewski, J.T., Marvuglia, A.: A new three-dimensional facial landmarks in recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 179–186. Springer, Heidelberg (2014)
Pabiasz, S., Starczewski, J.T.: A new approach to determine three-dimensional facial landmarks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 286–296. Springer, Heidelberg (2013)
Starczewski, J.T.: Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty. Studies in Fuzziness and Soft Computing, vol. 284. Springer, Heidelberg (2013)
Wechsler, H., Phillips, J.P., Bruce, V., Soulie, F.F., Huang, T.S.: Face Recognition: From Theory to Applications, vol. 163. Springer Science & Business Media, Heidelberg (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Starczewski, J.T., Pabiasz, S., Vladymyrska, N., Marvuglia, A., Napoli, C., Woźniak, M. (2016). Self Organizing Maps for 3D Face Understanding. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9693. Springer, Cham. https://doi.org/10.1007/978-3-319-39384-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-39384-1_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39383-4
Online ISBN: 978-3-319-39384-1
eBook Packages: Computer ScienceComputer Science (R0)