Self Organizing Maps for 3D Face Understanding | SpringerLink
Skip to main content

Self Organizing Maps for 3D Face Understanding

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2016)

Abstract

Landmarks are unique points that can be located on every face. Facial landmarks typically recognized by people are correlated with anthropomorphic points. Our purpose is to employ in 3D face recognition such landmarks that are easy to interpret. Face understanding is construed as identification of face characteristic points with automatic labeling of them. In this paper, we apply methods based on Self Organizing Maps to understand 3D faces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bas, E.: The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting. J. Artif. Intell. Soft Comput. Res. 6(1), 5–11 (2016)

    Article  Google Scholar 

  2. Bilski, J., Smolag, J.: Parallel architectures for learning the RTRN and elman dynamic neural networks. IEEE Trans. Parallel Distrib. Syst. 26(9), 2561–2570 (2015)

    Article  Google Scholar 

  3. Bilski, J., Smoląg, J., Żurada, J.M.: Parallel approach to the Levenberg-Marquardt learning algorithm for feedforward neural networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part I. LNCS, vol. 9119, pp. 3–14. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  4. Chen, M., Ludwig, S.A.: Particle swarm optimization based fuzzy clustering approach to identify optimal number of clusters. J. Artif. Intell. Soft Comput. Res. 4(1), 43–56 (2014)

    Article  Google Scholar 

  5. Chu, J.L., Krzyźak, A.: The recognition of partially occluded objects with support vector machines, convolutional neural networks and deep belief networks. J. Artif. Intell. Soft Comput. Res. 4(1), 5–19 (2014)

    Article  Google Scholar 

  6. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks and optimal linear predictors. Sig. Proc. Image Comm. 15(6), 559–565 (2000)

    Article  Google Scholar 

  7. Faltemier, T., Bowyer, K., Flynn, P.: Rotated profile signatures for robust 3d feature detection. In: 8th IEEE International Conference on Automatic Face Gesture Recognition, FG 2008, pp. 1–7, September 2008

    Google Scholar 

  8. Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R.: Content-based image indexing by data clustering and inverse document frequency. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B. (eds.) BDAS 2014. CCIS, vol. 424, pp. 374–383. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  9. Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R., Voloshynovskiy, S.: From single image to list of objects based on edge and blob detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 605–615. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Kitajima, R., Kamimura, R.: Accumulative information enhancement in the self-organizing maps and its application to the analysis of mission statements. J. Artif. Intell. Soft Comput. Res. 5(3), 161–176 (2015)

    Article  Google Scholar 

  11. Knop, M., Kapuściński, T., Mleczko, W.K.: Video key frame detection based on the restricted boltzmann machine. J. Appl. Math. Comput. Mech. 14(3), 49–58 (2015)

    Article  Google Scholar 

  12. Korytkowski, M., Nowicki, R., Scherer, R.: Neuro-fuzzy rough classifier ensemble. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 817–823. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)

    Article  MathSciNet  Google Scholar 

  14. Laskowski, L.: A novel hybrid-maximum neural network in stereo-matching process. Neural Comput. Appl. 23(7–8), 2435–2450 (2013)

    Article  Google Scholar 

  15. Laskowski, Ł., Jelonkiewicz, J., Hayashi, Y.: Extensions of hopfield neural networks for solving of stereo-matching problem. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 59–71. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  16. Laskowski, Ł., Laskowska, M., Jelonkiewicz, J., Boullanger, A.: Molecular approach to hopfield neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 72–78. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  17. Lei, Y., Bennamoun, M., Hayat, M., Guo, Y.: An efficient 3D face recognition approach using local geometrical signatures. Pattern Recogn. 47(2), 509–524 (2014)

    Article  Google Scholar 

  18. Li, H., Huang, D., Morvan, J.M., Wang, Y., Chen, L.: Towards 3d face recognition in the real: a registration-free approach using fine-grained matching of 3d keypoint descriptors. Int. J. Comput. Vis. 113(2), 128–142 (2015)

    Article  MathSciNet  Google Scholar 

  19. Mleczko, W.K., Kapuscinski, T., Nowicki, R.K.: Rough deep belief network - application to incomplete handwritten digits pattern classification. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2015. CCIS, vol. 538, pp. 400–411. Springer International Publishing, Switzerland (2015)

    Google Scholar 

  20. Pabiasz, S., Starczewski, J.T., Marvuglia, A.: SOM vs FCM vs PCA in 3D face recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part II. LNCS, vol. 9120, pp. 120–129. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  21. Pabiasz, S., Starczewski, J.T., Marvuglia, A.: A new three-dimensional facial landmarks in recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 179–186. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. Pabiasz, S., Starczewski, J.T.: A new approach to determine three-dimensional facial landmarks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 286–296. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Starczewski, J.T.: Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty. Studies in Fuzziness and Soft Computing, vol. 284. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  24. Wechsler, H., Phillips, J.P., Bruce, V., Soulie, F.F., Huang, T.S.: Face Recognition: From Theory to Applications, vol. 163. Springer Science & Business Media, Heidelberg (2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz T. Starczewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Starczewski, J.T., Pabiasz, S., Vladymyrska, N., Marvuglia, A., Napoli, C., Woźniak, M. (2016). Self Organizing Maps for 3D Face Understanding. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9693. Springer, Cham. https://doi.org/10.1007/978-3-319-39384-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39384-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39383-4

  • Online ISBN: 978-3-319-39384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics