A Practical Method for the Minimum Genus of a Graph: Models and Experiments | SpringerLink
Skip to main content

A Practical Method for the Minimum Genus of a Graph: Models and Experiments

  • Conference paper
  • First Online:
Experimental Algorithms (SEA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9685))

Included in the following conference series:

Abstract

We consider the problem of the minimum genus of a graph, a fundamental measure of non-planarity. We propose the first formulations of this problem as an integer linear program (ILP) and as a satisfiability problem (SAT). These allow us to develop the first working implementations of general algorithms for the problem, other than exhaustive search. We investigate several different ways to speed-up and strengthen the formulations; our experimental evaluation shows that our approach performs well on small to medium-sized graphs with small genus, and compares favorably to other approaches.

M. Chimani—Supported by the German Research Foundation (DFG) project CH 897/2-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a simple graph, the minimum genus embedding contains no face of length 1 or 2. On the other hand, we cannot be more specific than the lower bound of 3.

  2. 2.

    In [10], the validity of such a preprocessing is shown for several non-planarity measures, namely crossing number, skewness, coarseness, and thickness. Let H be the NPC of G. We can trivially observe that (A) \(\gamma (G)\le \gamma (H)\), and (B) \(\gamma (G)\ge \gamma (H)\). A: Given an optimal solution for H, we can embed each S onto the surface in place of its replacement edge, without any crossings. B: Each replaced component S contains a path connecting its poles that is drawn crossing-free in the optimal embedding of G; we can planarly draw all of S along this path, and then simplify the embedding by replacing this locally drawn S by its replacement edge; this gives a solution for H on the same surface.

  3. 3.

    First term: each edge lies on at most two faces, each face has size at least 3; second term: Euler’s formula with genus at least 1.

  4. 4.

    The previous version was the winner of the Sequential Appl. SAT+UNSAT Track of the SAT competition 2014 [3]. This improved version is even faster.

References

  1. Archdeacon, D.: The orientable genus is nonadditive. J. Graph Theor. 10(3), 385–401 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Battle, J., Harary, F., Kodama, Y., Youngs, J.W.T.: Additivity of the genus of a graph. Bull. Amer. Math. Soc. 68, 565–568 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belov, A., Diepold, D., Heule, M.J., Järvisalo, M. (eds.): Proceedings of SAT Competition 2014: Solver and Benchmark Descriptions. No. B-2014-2 in Series of Publications B, Department Of Computer Science, University of Helsinki (2014)

    Google Scholar 

  4. Boyer, J.M., Myrvold, W.J.: On the cutting edge: simplified \(O(n)\) planarity by edge addition. J. Graph Algorithms Appl. 8(2), 241–273 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brin, M.G., Squier, C.C.: On the genus of \(Z_3\times Z_3\times Z_3\). Eur. J. Comb. 9(5), 431–443 (1988)

    Article  MathSciNet  Google Scholar 

  6. Buchheim, C., Ebner, D., Jünger, M., Klau, G.W., Mutzel, P., Weiskircher, R.: Exact crossing minimization. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 37–48. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Cabello, S., Chambers, E.W., Erickson, J.: Multiple-source shortest paths in embedded graphs. SIAM J. Comput. 42(4), 1542–1571 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chambers, J.: Hunting for torus obstructions. M.Sc. thesis, University of Victoria (2002)

    Google Scholar 

  9. Chekuri, C., Sidiropoulos, A.: Approximation algorithms for euler genus and related problems. In: Proceedings of FOCS 2013, pp. 167–176 (2013)

    Google Scholar 

  10. Chimani, M., Gutwenger, C.: Non-planar core reduction of graphs. Disc. Math. 309(7), 1838–1855 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chimani, M., Mutzel, P., Bomze, I.: A new approach to exact crossing minimization. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 284–296. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Conder, M., Grande, R.: On embeddings of circulant graphs. Electron. J. Comb. 22(2), P2.28 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1998)

    MATH  Google Scholar 

  14. Deza, M., Fowler, P.W., Rassat, A., Rogers, K.M.: Fullerenes as tilings of surfaces. J. Chem. Inf. Comput. Sci. 40(3), 550–558 (2000)

    Article  Google Scholar 

  15. Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu, F., Vismara, L.: Drawing directed acyclic graphs: an experimental study. Int. J. Comput. Geom. Appl. 10(6), 623–648 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. 7(5–6), 303–325 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Djidjev, H., Reif, J.: An efficient algorithm for the genus problem with explicit construction of forbidden subgraphs. In: Proceedings of STOC 1991, pp. 337–347. ACM (1991)

    Google Scholar 

  18. Edmonds, J.: A combinatorial representation for polyhedral surfaces. Not. Amer. Math. Soc. 7, 646 (1960)

    Google Scholar 

  19. Erickson, J., Fox, K., Nayyeri, A.: Global minimum cuts in surface embedded graphs. In: Proceedings of SODA 2012, pp. 1309–1318. SIAM (2012)

    Google Scholar 

  20. Filotti, I.S.: An efficient algorithm for determining whether a cubic graph is toroidal. In: Proceedings of STOC 1978, pp. 133–142. ACM (1978)

    Google Scholar 

  21. Filotti, I.S., Miller, G.L., Reif, J.: On determining the genus of a graph in \(O(V^{O(G)})\) steps. In: Proceedings of STOC 1979, pp. 27–37. ACM (1979)

    Google Scholar 

  22. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the theory of NP-completeness. Bell Telephone Laboratories, New York (1979)

    MATH  Google Scholar 

  23. Gross, J.L., Tucker, T.W.: Topological Graph Theory. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1987)

    MATH  Google Scholar 

  24. Heffter, L.: Ueber das Problem der Nachbargebiete. Math. Ann. 38, 477–508 (1891)

    Article  MathSciNet  MATH  Google Scholar 

  25. Juvan, M., Marinček, J., Mohar, B.: Embedding graphs in the torus in linear time. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, pp. 360–363. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  26. Kawarabayashi, K., Mohar, B., Reed, B.: A simpler linear time algorithm for embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width. In: Proceedings of FOCS 2008, pp. 771–780 (2008)

    Google Scholar 

  27. Kawarabayashi, K., Sidiropoulos, A.: Beyond the euler characteristic: approximating the genus of general graphs. In: Proceedings of STOC 2015. ACM (2015)

    Google Scholar 

  28. Kotrbčík, M., Pisanski, T.: Genus of cartesian product of triangles. Electron. J. Comb. 22(4), P4.2 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Marušič, D., Pisanski, T., Wilson, S.: The genus of the GRAY graph is 7. Eur. J. Comb. 26(3–4), 377–385 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Mohar, B.: Embedding graphs in an arbitrary surface in linear time. In: Proceedings of STOC 1996, pp. 392–397. ACM (1996)

    Google Scholar 

  31. Mohar, B., Pisanski, T., Škoviera, M., White, A.: The cartesian product of 3 triangles can be embedded into a surface of genus 7. Disc. Math. 56(1), 87–89 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2001)

    MATH  Google Scholar 

  33. Myrvold, W., Kocay, W.: Errors in graph embedding algorithms. J. Comput. Syst. Sci. 77(2), 430–438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ringel, G.: Map Color Theorem. Springer, Heidelberg (1974)

    Book  MATH  Google Scholar 

  35. Schmidt, P.: Algoritmické vlastnosti vnorení grafov do plôch. B.Sc. thesis, Comenius University (2012). In Slovak

    Google Scholar 

  36. Thomassen, C.: The graph genus problem is NP-complete. J. Algorithms 10, 568–576 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. Thomassen, C.: The graph genus problem is NP-complete for cubic graphs. J. Comb. Theor. Ser. B 69, 52–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Armin Biere for providing the most recent version (as of 2015-06-05) of the lingeling SAT solver.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephan Beyer or Ivo Hedtke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Beyer, S., Chimani, M., Hedtke, I., Kotrbčík, M. (2016). A Practical Method for the Minimum Genus of a Graph: Models and Experiments. In: Goldberg, A., Kulikov, A. (eds) Experimental Algorithms. SEA 2016. Lecture Notes in Computer Science(), vol 9685. Springer, Cham. https://doi.org/10.1007/978-3-319-38851-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38851-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38850-2

  • Online ISBN: 978-3-319-38851-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics