Steiner Tree Heuristic in the Euclidean d-Space Using Bottleneck Distances | SpringerLink
Skip to main content

Steiner Tree Heuristic in the Euclidean d-Space Using Bottleneck Distances

  • Conference paper
  • First Online:
Experimental Algorithms (SEA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9685))

Included in the following conference series:

Abstract

Some of the most efficient heuristics for the Euclidean Steiner minimal tree problem in the d-dimensional space, \(d \ge 2\), use Delaunay tessellations and minimum spanning trees to determine small subsets of geometrically close terminals. Their low-cost Steiner trees are determined and concatenated in a greedy fashion to obtain a low cost tree spanning all terminals. The weakness of this approach is that obtained solutions are topologically related to minimum spanning trees. To avoid this and to obtain even better solutions, bottleneck distances are utilized to determine good subsets of terminals without being constrained by the topologies of minimum spanning trees. Computational experiments show a significant solution quality improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Comput. Geom. 3, 177–191 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beasley, J.E., Goffinet, F.: A Delaunay triangulation-based heuristic for the Euclidean Steiner problem. Networks 24(4), 215–224 (1994)

    Article  MATH  Google Scholar 

  3. de Berg, M., Cheong, O., van Krevald, M., Overmars, M.: Computational Geometry - Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  4. Brazil, M., Graham, R.L., Thomas, D.A., Zachariasen, M.: On the history of the Euclidean Steiner tree problem. Arch. Hist. Exact Sci. 68, 327–354 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brazil, M., Zachariasen, M.: Optimal Interconnection Trees in the Plane. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  6. DIMACS, ICERM: 11th DIMACS Implementation Challenge: Steiner Tree Problems (2014). http://dimacs11.cs.princeton.edu/

  7. Fampa, M., Anstreicher, K.M.: An improved algorithm for computing Steiner minimal trees in Euclidean d-space. Discrete Optim. 5, 530–540 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fampa, M., Lee, J., Maculan, N.: An overview of exact algorithms for the Euclidean Steiner tree problem in n-space, Int. Trans. OR (2015)

    Google Scholar 

  9. Fonseca, R., Brazil, M., Winter, P., Zachariasen, M.: Faster exact algorithms for computing Steiner trees in higher dimensional Euclidean spaces. In: Proceedings of the 11th DIMACS Implementation Challenge, Providence, Rhode Island, USA (2014). http://dimacs11.cs.princeton.edu/workshop.html

  10. do Forte, V.L., Montenegro, F.M.T., de Moura Brito, J.A., Maculan, N.: Iterated local search algorithms for the Euclidean Steiner tree problem in \(n\) dimensions. Int. Trans. OR (2015)

    Google Scholar 

  11. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1–29 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  13. Juhl, D., Warme, D.M., Winter, P., Zachariasen, M.: The GeoSteiner software package for computing Steiner trees in the plane: an updated computational study. In: Proceedings of the 11th DIMACS Implementation Challenge, Providence, Rhode Island, USA (2014). http://dimacs11.cs.princeton.edu/workshop.html

  14. Laarhoven, J.W.V., Anstreicher, K.M.: Geometric conditions for Euclidean Steiner trees in \({R}^d\). Comput. Geom. Theor. Appl. 46(5), 520–531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Laarhoven, J.W.V., Ohlmann, J.W.: A randomized Delaunay triangulation heuristic for the Euclidean Steiner tree problem in \({R}^d\). J. Heuristics 17(4), 353–372 (2011)

    Article  MATH  Google Scholar 

  16. Lorenzen, S.S., Winter, P.: Code and Data Repository at Github (2016). https://github.com/StephanLorenzen/ESMT-heuristic-using-bottleneck-distances/blob/master/README.md

  17. Olsen, A., Lorenzen, S. Fonseca, R., Winter, P.: Steiner tree heuristics in Euclidean \(d\)-space. In: Proceedings of the 11th DIMACS Implementation Challenge, Providence, Rhode Island, USA (2014). http://dimacs11.cs.princeton.edu/workshop.html

  18. Seidel, R.: The upper bound theorem for polytopes: an easy proof of its asymptotic version. Comp. Geom.-Theor. Appl. 5, 115–116 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Smith, J.M., Lee, D.T., Liebman, J.S.: An O(\(n \log n\)) heuristic for Steiner minimal tree problems on the Euclidean metric. Networks 11(1), 23–39 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smith, W.D.: How to find Steiner minimal trees in Euclidean d-space. Algorithmica 7, 137–177 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Toppur, B., Smith, J.M.: A sausage heuristic for Steiner minimal trees in three-dimensional Euclidean space. J. Math. Model. Algorithms 4, 199–217 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems: a computational study. In: Du, D.-Z., Smith, J., Rubinstein, J. (eds.) Advances in Steiner Trees, pp. 81–116. Springer, Dordrecht (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Winter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lorenzen, S.S., Winter, P. (2016). Steiner Tree Heuristic in the Euclidean d-Space Using Bottleneck Distances. In: Goldberg, A., Kulikov, A. (eds) Experimental Algorithms. SEA 2016. Lecture Notes in Computer Science(), vol 9685. Springer, Cham. https://doi.org/10.1007/978-3-319-38851-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38851-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38850-2

  • Online ISBN: 978-3-319-38851-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics