Sums of Read-Once Formulas: How Many Summands Suffice? | SpringerLink
Skip to main content

Sums of Read-Once Formulas: How Many Summands Suffice?

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9691))

Included in the following conference series:

  • 482 Accesses

Abstract

An arithmetic read-once formula (ROF) is a formula (circuit of fan-out 1) over \(+, \times \) where each variable labels at most one leaf. Every multilinear polynomial can be expressed as the sum of ROFs. In this work, we prove, for certain multilinear polynomials, a tight lower bound on the number of summands in such an expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A polynomial is multilinear if the individual degree of each variable is at most one.

References

  1. Anderson, M., van Melkebeek, D., Volkovich, I.: Deterministic polynomial identity tests for multilinear bounded-read formulae. Comput. Complex. 24(4), 695–776 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bshouty, D., Bshouty, N.H.: On interpolating arithmetic read-once formulas with exponentiation. J. Comput. Syst. Sci. 56(1), 112–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bshouty, N.H., Cleve, R.: Interpolating arithmetic read-once formulas in parallel. SIAM J. Comput. 27(2), 401–413 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bshouty, N.H., Hancock, T.R., Hellerstein, L.: Learning boolean read-once formulas over generalized bases. J. Comput. Syst. Sci. 50(3), 521–542 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hancock, T.R., Hellerstein, L.: Learning read-once formulas over fields and extended bases. In: Warmuth, M.K., Valiant, L.G. (eds.) Proceedings of the Fourth Annual Workshop on Computational Learning Theory, COLT 1991, Santa Cruz, California, USA, 5–7 August 1991, pp. 326–336. Morgan Kaufmann (1991)

    Google Scholar 

  6. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Comput. Complex. 13(1–2), 1–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kayal, N., Koiran, P., Pecatte, T., Saha, C.: Lower bounds for sums of powers of low degree univariates. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015, Part I. LNCS, vol. 9134, pp. 810–821. Springer, Heidelberg (2015)

    Google Scholar 

  8. Raz, R.: Multi-linear formulas for permanent and determinant are of super-polynomial size. J. ACM 56(2), 1–17 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shpilka, A., Volkovich, I.: On reconstruction and testing of read-once formulas. Theor. Comput. 10, 465–514 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shpilka, A., Volkovich, I.: Read-once polynomial identity testing. Comput. Complex. 24(3), 477–532 (2015). (combines results from papers in RANDOM 2009 and STOC 2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Volkovich, I.: Characterizing arithmetic read-once formulae. ACM Trans. Comput. Theor. 8(1), 2:1–2:19 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Tawari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mahajan, M., Tawari, A. (2016). Sums of Read-Once Formulas: How Many Summands Suffice?. In: Kulikov, A., Woeginger, G. (eds) Computer Science – Theory and Applications. CSR 2016. Lecture Notes in Computer Science(), vol 9691. Springer, Cham. https://doi.org/10.1007/978-3-319-34171-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34171-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34170-5

  • Online ISBN: 978-3-319-34171-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics