An Investigation of Face and Fingerprint Feature-Fusion Guidelines | SpringerLink
Skip to main content

An Investigation of Face and Fingerprint Feature-Fusion Guidelines

  • Conference paper
  • First Online:
Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery (BDAS 2015, BDAS 2016)

Abstract

There are a lack of multi-modal biometric fusion guidelines at the feature-level. This paper investigates face and fingerprint features in the form of their strengths and weaknesses. This serves as a set of guidelines to authors that are planning face and fingerprint feature-fusion applications or aim to extend this into a general framework. The proposed guidelines were applied to the face and fingerprint to achieve a 91.11 % recognition accuracy when using only a single training sample. Furthermore, an accuracy of 99.69 % was achieved when using five training samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadian, K., Gavrilova, M.: A multi-modal approach for high-dimensional feature recognition. Vis. Comput. 29(2), 123–130 (2013)

    Article  Google Scholar 

  2. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  MATH  Google Scholar 

  3. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  4. Bharadwaj, S., Vatsa, M., Singh, R.: Biometric quality: from assessment to multibiometrics. IIITD-TR-2015-003 (2015)

    Google Scholar 

  5. Bovik, A.C.: Handbook of Image and Video Processing. Academic Press, New York (2010)

    MATH  Google Scholar 

  6. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  7. Budhi, G.S., Adipranata, R., Hartono, F.J.: The use of gabor filter and back-propagation neural network for the automobile types recognition. In: 2nd International Conference SIIT 2010 (2010)

    Google Scholar 

  8. Chikkerur, S., Cartwright, A.N., Govindaraju, V.: Fingerprint enhancement using STFT analysis. Pattern Recogn. 40(1), 198–211 (2007)

    Article  MATH  Google Scholar 

  9. Feng, J., Jain, A.: Fingerprint reconstruction: from minutiae to phase. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 209–223 (2011)

    Article  Google Scholar 

  10. Iloanusi, O.N.: Fusion of finger types for fingerprint indexing using minutiae quadruplets. Pattern Recogn. Lett. 38, 8–14 (2014). http://www.sciencedirect.com/science/article/pii/S016786551300411X

    Article  Google Scholar 

  11. Jain, A.K., Prabhakar, S., Hong, L., Pankanti, S.: Filterbank-based fingerprint matching. IEEE Trans. Image Process. 9(5), 846–859 (2000)

    Article  Google Scholar 

  12. Karki, M.V., Selvi, S.S.: Multimodal biometrics at feature level fusion using texture features. Int. J. Biometrics Bioinf. 7(1), 58–73 (2013)

    Google Scholar 

  13. Kaur, D., Kaur, G.: Level of fusion in multimodal biometrics: a review. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(2), 242–246 (2013)

    Google Scholar 

  14. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer Science & Business Media, Heidelberg (2009)

    Book  MATH  Google Scholar 

  15. Peralta, D., Triguero, I., Sanchez-Reillo, R., Herrera, F., Benitez, J.: Fast fingerprint identification for large databases. Pattern Recogn. 47(2), 588–602 (2014). http://dx.org/10.1016/j.patcog.2013.08.002

    Article  Google Scholar 

  16. Porwik, P., Wrobel, K.: The new algorithm of fingerprint reference point location based on identification masks. In: Kurzyński, M., Puchała, E., Woźniak, M., żołnierek, A. (eds.) Computer Recognition Systems. Advances in Soft Computing, vol. 30, pp. 807–814. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Raghavendra, R., Dorizzi, B., Rao, A., Kumar, G.H.: Designing efficient fusion schemes for multimodal biometric systems using face and palmprint. Pattern Recogn. 44(5), 1076–1088 (2011)

    Article  MATH  Google Scholar 

  18. Rattani, A., Kisku, D.R., Bicego, M., Tistarelli, M.: Feature level fusion of face and fingerprint biometrics. In: Biometrics: Theory, Applications, and Systems, pp. 1–5 (2011)

    Google Scholar 

  19. Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: 1994 Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 138–142. IEEE (1994)

    Google Scholar 

  20. Sharma, P., Kaur, M.: Multimodal classification using feature level fusion and SVM. Int. J. Comput. Appl. 76(4), 26–32 (2013)

    Google Scholar 

  21. Thomaz, C.E., Giraldi, G.A.: A new ranking method for principal components analysis and its application to face image analysis. Image Vis. Comput. 28(6), 902–913 (2010)

    Article  Google Scholar 

  22. Wang, Z., Liu, C., Shi, T., Ding, Q.: Face-palm identification system on feature level fusion based on CCA. J. Inf. Hiding Multimedia Signal Process. 4(4), 272–279 (2013)

    Google Scholar 

  23. Yao, Y.F., Jing, X.Y., Wong, H.S.: Face and palmprint feature level fusion for single sample biometrics recognition. Neurocomputing 70(7), 1582–1586 (2007)

    Article  Google Scholar 

  24. Yin, Y., Liu, L., Sun, X.: SDUMLA-HMT: a multimodal biometric database. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds.) CCBR 2011. LNCS, vol. 7098, pp. 260–268. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Zou, J., Feng, J., Zhang, X., Ding, M.: Local orientation field based nonlocal means method for fingerprint image de-noising. J. Signal Inf. Process. 4, 150 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dane Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Brown, D., Bradshaw, K. (2016). An Investigation of Face and Fingerprint Feature-Fusion Guidelines. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery. BDAS BDAS 2015 2016. Communications in Computer and Information Science, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-319-34099-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34099-9_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34098-2

  • Online ISBN: 978-3-319-34099-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics