Logic-Based Decomposition Methods for the Travelling Purchaser Problem | SpringerLink
Skip to main content

Logic-Based Decomposition Methods for the Travelling Purchaser Problem

  • Conference paper
  • First Online:
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2016)

Abstract

We present novel branch-and-check and logic-based Benders decomposition techniques for the Travelling Purchaser Problem, an important optimization problem with applications in vehicle routing, logistics, and warehouse management. Our master problem determines a set of markets and directed travel arcs that satisfy product purchase constraints with relaxed travel costs. Our subproblem identifies subtours within this master assignment and produces a set of generalized subtour elimination cuts. We show that the proposed technique demonstrates strong performance on the asymmetric problem variants, finding optimal solutions to previously unsolved instances, while performing competitively on a number of symmetric problem classes. Furthermore, our model is implemented unchanged for the four problem variants whereas other state-of-the-art approaches are variant-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The limit of one per iteration is due to the depot inclusion condition.

  2. 2.

    Experiments using dynamic variable creation in SCIP [1] show a relative improvement in B&C compared to LBBD though both CPLEX implementations are faster.

References

  1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Applegate, D., Bixby, R., Cook, W., Chvátal, V.: On the solution of traveling salesman problems. Rheinische Friedrich-Wilhelms-Universität Bonn (1998)

    Google Scholar 

  3. Balas, E., Toth, P.: Branch and bound methods for the traveling salesman problem. Technical report MSRR-488, DTIC Document (1983)

    Google Scholar 

  4. Beck, J.C.: Checking-up on branch-and-check. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 84–98. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Bontoux, B., Feillet, D.: Ant colony optimization for the traveling purchaser problem. Comput. Oper. Res. 35(2), 628–637 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burt, C.N., Lipovetzky, N., Pearce, A.R., Stuckey, P.J.: Approximate uni-directional benders decomposition. In: Proceedings of PlanSOpt-15 Workshop on Planning, Search and Optimization AAAI-15 (2015)

    Google Scholar 

  7. Cambazard, H., Penz, B.: A constraint programming approach for the traveling purchaser problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 735–749. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Desrochers, M., Laporte, G.: Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints. Oper. Res. Lett. 10(1), 27–36 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erlenkotter, D.: A dual-based procedure for uncapacitated facility location. Oper. Res. 26(6), 992–1009 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Flood, M.M.: The traveling-salesman problem. Oper. Res. 4(1), 61–75 (1956)

    Article  MathSciNet  Google Scholar 

  11. Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theor. Appl. 10(4), 237–260 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goerler, A., Schulte, F., Voß, S.: An application of late acceptance hill-climbing to the traveling purchaser problem. In: Pacino, D., Voß, S., Jensen, R.M. (eds.) ICCL 2013. LNCS, vol. 8197, pp. 173–183. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Goldbarg, M.C., Bagi, L.B., Goldbarg, E.F.G.: Transgenetic algorithm for the traveling purchaser problem. Eur. J. Oper. Res. 199(1), 36–45 (2009)

    Article  MATH  Google Scholar 

  14. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logistics (NRL) 34(3), 307–318 (1987)

    Article  MATH  Google Scholar 

  15. Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Math. Program. 96(1), 33–60 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Laporte, G.: Generalized subtour elimination constraints and connectivity constraints. J. Oper. Res. Soc. 37, 509–514 (1986)

    Article  MATH  Google Scholar 

  17. Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)

    Article  MATH  Google Scholar 

  18. Laporte, G., Nobert, Y.: A cutting planes algorithm for the m-salesmen problem. J. Oper. Res. Soc. 31, 1017–1023 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Laporte, G., Riera-Ledesma, J., Salazar-González, J.-J.: A branch-and-cut algorithm for the undirected traveling purchaser problem. Oper. Res. 51(6), 940–951 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miliotis, P.: Integer programming approaches to the travelling salesman problem. Math. Program. 10(1), 367–378 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling salesman problems. J. ACM (JACM) 7(4), 326–329 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  22. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33(1), 60–100 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ramesh, T.: Traveling purchaser problem. Opsearch 18(1–3), 78–91 (1981)

    MATH  Google Scholar 

  24. Riera-Ledesma, J., Salazar-González, J.-J.: Solving the asymmetric traveling purchaser problem. Ann. Oper. Res. 144(1), 83–97 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Singh, K.N., van Oudheusden, D.L.: A branch and bound algorithm for the traveling purchaser problem. Eur. J. Oper. Res. 97(3), 571–579 (1997)

    Article  MATH  Google Scholar 

  26. Thorsteinsson, E.S.: Branch-and-check: a hybrid framework integrating mixed integer programming and constraint logic programming. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 16–30. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  27. Tran, T.T., Araujo, A., Beck, J.C.: Decomposition methods for the parallel machine scheduling problem with setups. INFORMS J. Comput. 28(1), 83–95 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle E. C. Booth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Booth, K.E.C., Tran, T.T., Beck, J.C. (2016). Logic-Based Decomposition Methods for the Travelling Purchaser Problem. In: Quimper, CG. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2016. Lecture Notes in Computer Science(), vol 9676. Springer, Cham. https://doi.org/10.1007/978-3-319-33954-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33954-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33953-5

  • Online ISBN: 978-3-319-33954-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics