Parallel Composition of Scheduling Solvers | SpringerLink
Skip to main content

Parallel Composition of Scheduling Solvers

  • Conference paper
  • First Online:
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2016)

Abstract

Recent work in model combinators, as well as projects like G12 and SIMPL, achieved significant progress in automating the generation of complex and hybrid solvers from high-level model specifications. This paper extends model combinators into the scheduling domain. This is of particular interest as, today, both Constraint Programming (CP) and Mixed-Integer Programming (MIP) perform well on scheduling problems providing different capabilities and trade-offs. The ability to construct hybrid scheduling solvers to leverage the strengths of both technologies as well as multiple problem encodings through high-level model combinators provides new opportunities. Complex parallel hybrids can be synthesized with minimal effort on the part of the user and provide substantial performance benefits over standalone solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Line 3 refers to the search procedure defined earlier with a closure and named search.

References

  1. Akgun, O., Miguel, I., Jefferson, C., Frisch, A., Hnich, B.: Extensible automated constraint modelling (2011)

    Google Scholar 

  2. Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY-CP: a sequential CP portfolio solver. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, SAC 2015, pp. 1861–1867. ACM, New York (2015)

    Google Scholar 

  3. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. Commun. ACM 54(9), 69–77 (2011)

    Article  Google Scholar 

  4. Duck, G.J., De Koninck, L., Stuckey, P.J.: Cadmium: an implementation of ACD term rewriting. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 531–545. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Duck, G.J., Stuckey, P.J., Brand, S.: ACD term rewriting. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 117–131. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Fazel-Zarandi, M.M., Beck, J.C.: Solving a location-allocation problem with logic-based benders’ decomposition. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 344–351. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Fontaine, D., Michel, L.: A high level language for solver independent model manipulation and generation of hybrid solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 180–194. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Fontaine, D., Michel, L., Van Hentenryck, P.: Model combinators for hybrid optimization. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 299–314. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Frisch, A., Harvey, W., Jefferson, C., Martínez-Hernández, B., Miguel, I.: Essence: a constraint language for specifying combinatorial problems. Constraints 13, 268–306 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hooker, J.N.: Logic-based benders decomposition. Math. Program. 96, 33–60 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: a hierarchical portfolio of solvers and transformations. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 301–317. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  12. Seldin, J.P., Hindley, J.R.: Lambda-Calculus and Combinators An Introduction, vol. 2. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  13. Kadioglu, S., O’Mahony, E., Refalo, P., Sellmann, M.: Incorporating variance in impact-based search. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 470–477. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Ku, W.-Y., Beck, J.C.: Revisiting off-the-shelf mixed integer programming and constraint programming models for job shop scheduling. Technical report, University of Toronto (2014). https://www.mie.utoronto.ca/research/technical-reports/reports/JSP.pdf

  15. Michel, L., See, A., Van Hentenryck, P.: Transparent parallelization of constraint programming. INFORMS J. Comput. 21(3), 363–382 (2009)

    Article  MATH  Google Scholar 

  16. Michel, L., Van Hentenryck, P.: A decomposition-based implementation of search strategies. ACM Trans. Comput. Logic 5(2), 351–383 (2004)

    Article  MathSciNet  Google Scholar 

  17. Moisan, T., Gaudreault, J., Quimper, C.-G.: Parallel discrepancy-based search. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 30–46. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Nasiri, M.M., Kianfar, F.: A guided tabu search/path relinking algorithm for the job shop problem. Int. J. Adv. Manuf. Technol. 58(9–12), 1105–1113 (2012)

    Article  Google Scholar 

  19. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: 19th Irish Conference on AI (2008)

    Google Scholar 

  20. Pacino, D., Van Hentenryck, P.: Large neighborhood search and adaptive randomized decompositions for flexible jobshop scheduling. In: IJCAI, pp. 1997–2002 (2011)

    Google Scholar 

  21. Perron, L.: Search procedures and parallelism in constraint programming. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 346–360. Springer, Heidelberg (1999)

    Google Scholar 

  22. Pisinger, D., Ropke, S.: Large Neighborhood Search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 399–419. Springer, New York (2010)

    Chapter  Google Scholar 

  23. Puchinger, J., Stuckey, P.J., Wallace, M., Brand, S.: From high-level model to branch-and-price solution in G12. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 218–232. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Puchinger, J., Stuckey, P.J., Wallace, M.G., Brand, S.: Dantzig-wolfe decomposition and branch-and-price solving in G12. Constraints 16(1), 77–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Refalo, P.: Linear formulation of constraint programming models and hybrid solvers. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 369–383. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  26. Régin, J.-C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  27. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.J.: Search combinators. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 774–788. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  28. Schulte, C.: Parallel search made simple. In: Proceedings of TRICS, a Post-Conference Workshop of CP 2000, Singapore, September 2000

    Google Scholar 

  29. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  30. Stuckey, P.J., de la Banda, M.G., Maher, M.J., Marriott, K., Slaney, J.K., Somogyi, Z., Wallace, M., Walsh, T.: The G12 project: mapping solver independent models to efficient solutions. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 9–13. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Van Hentenryck, P.: Parallel constraint satisfaction in logic programming: pre-liminary results of CHIP within PEPSys. In: Sixth International Conference onLogic Programming, Lisbon, Portugal, June 1989

    Google Scholar 

  32. Van Hentenryck, P., Michel, L.: Synthesis of constraint-based local search algorithms from high-level models. In: Proceedings of the National Conference on Artificial Intelligence, 1(CONF 22), pp. 273–279 (2007)

    Google Scholar 

  33. Van Hentenryck, P., Michel, L.: The objective-CP optimization system. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 8–29. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  34. Vilím, P., Barták, R., Čepek, O.: Extension of o(n log n) filtering algorithms for the unary resource constraint to optional activities. Constraints 10(4), 403–425 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vilím, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453. Springer, Heidelberg (2015)

    Google Scholar 

  36. Lin, X., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algorithm selection for sat. J. Artif. Int. Res. 32(1), 565–606 (2008)

    MATH  Google Scholar 

  37. Yunes, T., Aron, I.D., Hooker, J.N.: An integrated solver for optimization problems. Oper. Res. 58(2), 342–356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Michel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fontaine, D., Michel, L., Van Hentenryck, P. (2016). Parallel Composition of Scheduling Solvers. In: Quimper, CG. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2016. Lecture Notes in Computer Science(), vol 9676. Springer, Cham. https://doi.org/10.1007/978-3-319-33954-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33954-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33953-5

  • Online ISBN: 978-3-319-33954-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics