Abstract
The vocabulary space of the Semantic Web includes more than 500 vocabularies according to the Linked Open Vocabularies (LOV) initiative that maintains the directory list and provides search functionality on top of the curated data. Domain experts and researchers have populated it to facilitate the interpretation and exchange of information in the Web of Data. The abundance of vocabularies and terms available in the LOV space, on one hand aims to cover the major knowledge management needs, but on the other hand it could be cumbersome for a non-expert or even a vocabulary expert to find the correct way through the collection. To address this problem, we present an approach that helps to identify the most appropriate set of LOV vocabulary terms for a given Web content context by leveraging the existing dynamics within the LOV graph and the usage patterns in the LOD cloud. The paper describes the framework architecture that enables the discovery of vocabularies; it focuses on the corresponding metrics and algorithm, and discusses the outcomes of the applied experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
E.g. the schema.org profile is available under the URL: http://lov.okfn.org/dataset/lov/vocabs/schema.
- 3.
- 4.
- 5.
By notifying the server that the client accepts content in the application/rdf+xml format.
- 6.
- 7.
References
Atemezing, G.A., Troncy, R.: Information content based ranking metric for linked open vocabularies. In: Proceedings of the 10th International Conference on Semantic Systems, pp. 53–56. ACM (2014)
Auer, S., Demter, J., Martin, M., Lehmann, J.: LODstats – an extensible framework for high-performance dataset analytics. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 353–362. Springer, Heidelberg (2012)
Bizer, C., Eckert, K., Meusel, R., Mühleisen, H., Schuhmacher, M., Völker, J.: Deployment of RDFa, microdata, and microformats on the web – a quantitative analysis. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 17–32. Springer, Heidelberg (2013)
Butt, A.S.: Ontology search: finding the right ontologies on the web. In: Proceedings of the 24th International Conference on World Wide Web Companion, pp. 487–491. International World Wide Web Conferences Steering Committee (2015)
Sahar Butt, A., Haller, A., Xie, L.: Relationship-based top-k concept retrieval for ontology search. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS, vol. 8876, pp. 485–502. Springer, Heidelberg (2014)
Guha, R.: Introducing schema.org: search engines come together for a richer web (2011). http://insidesearch.blogspot.com/2011/06/introducing-schemaorg-search-engines.html
Heath, T., Bizer, C.: Linked data: evolving the web into a global data space. Synth. Lect. Semant. Web: Theory Technol. 1(1), 1–136 (2011)
Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the Pedantic Web (2010)
Käfer, T., Harth, A.: Billion Triples Challenge data set (2014). Downloaded from http://km.aifb.kit.edu/projects/btc-2014/
Meusel, R., Paulheim, H.: Heuristics for fixing common errors in deployed schema.org microdata. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 152–168. Springer, Heidelberg (2015)
Meusel, R., Petrovski, P., Bizer, C.: The WebDataCommons microdata, RDFa and microformat dataset series. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 277–292. Springer, Heidelberg (2014)
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report 1999–66, Stanford InfoLab, November 1999
Schaible, J., Gottron, T., Scheglmann, S., Scherp, A.: Lover: support for modeling data using linked open vocabularies. In: Proceedings of the Joint EDBT/ICDT Workshops, pp. 89–92. ACM (2013)
Schaible, J., Gottron, T., Scherp, A.: Survey on common strategies of vocabulary reuse in linked open data modeling. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 457–472. Springer, Heidelberg (2014)
Stadtmüller, S., Harth, A., Grobelnik, M.: Accessing information about linked data vocabularies with vocab. cc. In: Li, J., Qi, G., Zhao, D., Nejdl, W., Zheng, H.-T. (eds.) Semantic Web and Web Science, pp. 391–396. Springer, New York (2013)
Stavrakantonakis, I., Fensel, A., Fensel, D.: Matching web entities with potential actions. In: SEMANTICS (2014)
Stavrakantonakis, I., Toma, I., Fensel, A., Fensel, D.: Hotel websites, web 2.0, web 3.0 and online direct marketing: the case of Austria. In: Xiang, Z., Tussyadiah, L. (eds.) Information and Communication Technologies in Tourism, pp. 665–677. Springer, Switzerland (2014)
Vandenbussche, P.-Y., Vatant, B.: Linked open vocabularies. ERCIM News 96, 21–22 (2014)
Acknowledgments
This work has been partially supported by the EU projects BYTE, ENTROPY, EUTravel, FWF project OntoHealth, as well as FFG projects OpenFridge and TourPack.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Stavrakantonakis, I., Fensel, A., Fensel, D. (2016). Linked Open Vocabulary Recommendation Based on Ranking and Linked Open Data. In: Qi, G., Kozaki, K., Pan, J., Yu, S. (eds) Semantic Technology. JIST 2015. Lecture Notes in Computer Science(), vol 9544. Springer, Cham. https://doi.org/10.1007/978-3-319-31676-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-31676-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31675-8
Online ISBN: 978-3-319-31676-5
eBook Packages: Computer ScienceComputer Science (R0)