Efficiently Finding Paths Between Classes to Build a SPARQL Query for Life-Science Databases | SpringerLink
Skip to main content

Efficiently Finding Paths Between Classes to Build a SPARQL Query for Life-Science Databases

  • Conference paper
  • First Online:
Semantic Technology (JIST 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9544))

Included in the following conference series:

Abstract

Many databases in life science are provided in Resource Description Framework (RDF) model with SPARQL Protocol and RDF Query Language (SPARQL) endpoints. However, it may be difficult for users who are not familiar with Semantic Web technologies to write a SPARQL query. Therefore, assisting users to build SPARQL queries is important task to expand the range of users of RDF databases. We developed a web application called SPARQL Builder (http://sparqlbuilder.org/) that enables users to access life-science RDF datasets by assisting them in writing SPARQL queries. One of the key technologies used in SPARQL Builder is to extract possible relationships in an RDF dataset between two classes of input and output data. We express such relationships by paths on a labeled graph called class graph representing class–predicate–class relations in a dataset. In addition, we present an efficient algorithm to compute all the possible paths between two classes on a class graph. To show the performance of the proposed algorithm, we compared our algorithm with a naive method using RDF datasets of various class sizes and confirmed that our algorithm runs much faster when the numbers of classes and relations are relatively large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://oat.openlinksw.com/isparql/index.html.

References

  1. Linked Data. http://www.w3.org/DesignIssues/LinkedData.html

  2. The UniProt Consortium: Reorganizing the protein space at the Universal ProteinResource (UniProt). Nucl. Acids Res. 40(D1), D71–D75 (2012)

    Article  Google Scholar 

  3. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform. 41(5), 706–716 (2008)

    Article  Google Scholar 

  4. Jupp, S., Malone, J., Bolleman, J., Brandizi, M., Davies, M., Garcia, L., Gaulton, A., Gehant, S., Laibe, C., Redaschi, N., Wimalaratne, S.M., Martin, M., Le Novére, N., Parkinson, H., Birney, E., Jenkinson, A.M.: The EBI RDF platform: linked open data for the life sciences. Bioinform. 30(9), 1338–1339 (2014)

    Article  Google Scholar 

  5. Yamaguchi, A., Kozaki, K., Lenz, K., Wu, H., Kobayashi, N.: An Intelligent SPARQL Query Builder for Exploration of Various Life-science Databases. In: CEUR Workshop Proceedings 1279 of the 3rd International Workshop on Intelligent Exploration of Semantic Data (IESD 2014), Riva del Garda, Italy.(1279)

    Google Scholar 

  6. Ferré, S., Hermann, A.: Reconciling faceted search and query languages for the semantic web. IJMSO 7(1), 37–54 (2012)

    Article  Google Scholar 

  7. Guyonvarch, J., Ferré, S.: Scalewelis: a scalable query-based faceted search elena work. Multilingual Question Answering over Linked Data (QALD-3), Valencia, Spain (2013)

    Google Scholar 

  8. Russell, A., Smart, P.R., Braines, D., Shadbolt, N.R.: NITELIGHT: a graphical tool for semantic query construction. In: Semantic Web User Interaction Workshop (SWUI 2008), Florence, Italy (2008)

    Google Scholar 

  9. Hogenboom, F., Milea, V., Frasincar, F., Kaymak, U.: RDF-GL: A SPARQL-based graphical query language for RDF. In: Chbeir, R., Badr, Y., Abraham, A., Hassanien, A.-E. (eds.) Emergent Web Intelligence: Advanced Information Retrieval, pp. 87–116. Springer, London (2010)

    Chapter  Google Scholar 

  10. Popov, I.O., Schraefel, M.C., Hall, W., Shadbolt, N.: Connecting the dots: a multi-pivot approach to data exploration. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 553–568. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Kozaki, K., Hirota, T., Mizoguchi, R.: Understanding an ontology through divergent exploration. In: Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., Pan, J., Antoniou, G. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 305–320. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Li, F., Le, W., Duan, S., Kementsietsidis, A.: Scalable keyword search on large RDF data. IEEE Trans. Knowl. Data Eng. 26, 2774–2788 (2014). doi:10.1109/TKDE.2014.2302294

    Article  Google Scholar 

  13. Tran, T., Ladwig, G., Rudolph, S.: Managing structured and semistructured RDF data using structure indexes. IEEE Trans. Knowl. Data Eng. 25(9), 2076–2089 (2013)

    Article  Google Scholar 

  14. Kobayashi, N., Toyoda, T.: BioSPARQL: ontology-based smart building of SPARQL queries for biological linked open data. In: SWAT4LS, pp. 47–49, London, UK (2011)

    Google Scholar 

  15. Grossi, R.: Enumeration of paths, cycles, and spanning trees. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, pp. 1–7. Springer, New York (2015)

    Chapter  Google Scholar 

  16. Zhang, H., Li, Y., Tan, H.B.K.: Measuring design complexity of semantic web ontologies. J. Syst. Softw. 83, 803–814 (2010)

    Article  Google Scholar 

  17. Yamamoto, Y., Yamaguchi, A., Bono, H., Takagi, T.: Allie: a database and a search service of abbreviations and long forms. Database (2011). doi:10.1093/database/bar013

    Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 25280081, 24120002 and the National Bioscience Database Center (NBDC) of the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuko Yamaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Yamaguchi, A., Kozaki, K., Lenz, K., Wu, H., Yamamoto, Y., Kobayashi, N. (2016). Efficiently Finding Paths Between Classes to Build a SPARQL Query for Life-Science Databases. In: Qi, G., Kozaki, K., Pan, J., Yu, S. (eds) Semantic Technology. JIST 2015. Lecture Notes in Computer Science(), vol 9544. Springer, Cham. https://doi.org/10.1007/978-3-319-31676-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31676-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31675-8

  • Online ISBN: 978-3-319-31676-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics