A Generalized Authentication Scheme for Mobile Phones Using Gait Signals | SpringerLink
Skip to main content

A Generalized Authentication Scheme for Mobile Phones Using Gait Signals

  • Conference paper
  • First Online:
E-Business and Telecommunications (ICETE 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 585))

Included in the following conference series:

Abstract

Despite the reliability of authentication schemes using tokens or biometric modalities, their requirement of explicit gestures makes them less usable. On the other hand, the study on gait signals which are potential reliable for effective implicit authentication have been raised recently. Having said that, all the existing solutions fail to be applicable in reality since they rely on having sensors fixed to a specific position and orientation. In order to handle the instability of sensor’s orientation, a flexible approach taking advantages of available sensors on mobile devices is our main contribution in this work. Utilizing both statistical and supervised learning, we conduct experiments on the signal captured in different positions: front pocket and waist. In particular, adopting PCA+SVM brings about impressive results on signals in front pocket with an equal error rate of 2.45 % and accuracy rate of 99.14 % in regard to the verification and identification process, respectively. The proposed method outperformed other state-of-the-art studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ailisto, H., Lindholm, M., Mantyjarvi, J., Vildjounaite E., Makela, S.M.: Identifying people from gait pattern with accelerometers. In: Proceedings of SPIE 5779, Biometric Technology for Human Identification II (2005)

    Google Scholar 

  2. Breitinger, F., Nickel, C.: User survey on phone security and usage. In: Proceedings of BIOSIG, vol. 164GI (2010)

    Google Scholar 

  3. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)

    Article  Google Scholar 

  4. Fish, D.J., Nielsen, J.: Clinical assessment of human gait. J. Prosthet. Orthot. 5(2), 39 (1993)

    Article  Google Scholar 

  5. Mondal, S., Nandy, A., Chakraborty, P., Nandi, G.C.: Gait based personal identification system using rotation sensor. Comput. Inf. Sci. 3(2), 395–402 (2012)

    Google Scholar 

  6. Yuexiang, L., Xiabo, W., Feng, Q.: Gait authentication based on acceleration signals of ankle. Chin. J. Electron. 20(3), 447–451 (2011)

    Google Scholar 

  7. Terada, S., Enomoto, Y., Hanawa D., Oguchi, K.: Performance of gait authentication using an acceleration sensor. In: Proceedings of 34th ICTSP (2011)

    Google Scholar 

  8. Gafurov, D., Snekkenes, E.: Gait recognition using wearable motion recording sensors. EURASIP J. Adv. Signal Process. 2009, 7 (2009)

    Article  MATH  Google Scholar 

  9. Pan, G., Zhang, Y., Wu, Z.: Accelerometer-based gait recognition via voting by signature points. IET Electron. Lett. 45(22), 1116–1118 (2009)

    Article  Google Scholar 

  10. Frank, F., Mannor, S., Precup, D.: Activity and gait recognition with time-delay embeddings. In: Proceedings of the 24th AAAI (2010)

    Google Scholar 

  11. Derawi, M., Nickel, C., Bours, P., Busch, C.: Unobtrusive user-authentication on mobile phones using biometric gait recoginition. In: Proceedings of the 6th IIH-MSP (2010)

    Google Scholar 

  12. Sprager, S., Zazula, D.: A cumulant-based method for gait identification using accelerometer data with principal component analysis and support vector machine. WSEAS Trans. Signal Process. 5, 369–378 (2009)

    Google Scholar 

  13. Holien, K., Gait Recoginition under non-standard circumstances, Master thesis, Gjovik University College (2008)

    Google Scholar 

  14. Chang, C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27 (2011)

    Article  Google Scholar 

  15. Daubechies, I., Bates, B.: Ten lectures on wavelets. J. Acoust. Soc. Am. 93(3), 1671–1671 (1993)

    Article  Google Scholar 

  16. Derawi, M., Bours, P.: Gait and activity recognition using commercial phones. Comput. Secur. 39, 137–144 (2013)

    Article  Google Scholar 

  17. Derawi, M., Bours, P., Holien, K.: Improved cycle detection for accelerometer based gait authentication. In: 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 312–317. IEEE (2010)

    Google Scholar 

  18. Gafurov, D., Snekkenes, E., Bours, P.: Improved gait recognition performance using cycle matching. In: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 836–841. IEEE (2010)

    Google Scholar 

  19. Hoang, T., Choi, D., Vo, V., Nguyen, A., Nguyen, T.: A lightweight gait authentication on mobile phone regardless of installation error. In: Janczewski, L.J., Wolfe, H.B., Shenoi, S. (eds.) SEC 2013. IFIP AICT, vol. 405, pp. 83–101. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Lu, H., Huang, J., Saha, T., Nachman, L.: Unobtrusive gait verification for mobile phones. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers. ACM (2014)

    Google Scholar 

  21. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  22. Mjaaland, B.B., Bours, P., Gligoroski, D.: Walk the walk: attacking gait biometrics by imitation. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 361–380. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Rong, L., Jianzhong, Z., Ming, L., Xiangfeng, H.: A wearable acceleration sensor system for gait recognition. In: 2nd IEEE Conference on Industrial Electronics and Applications ICIEA 2007, pp. 2654–2659. IEEE (2007)

    Google Scholar 

  24. Whitle, M.: Gait Analysis: An Introduction, vol. 1. Elsevier, Philadelphia (2007)

    Google Scholar 

  25. Ngo, T.: The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recogn. 47(1), 228–237 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by 2012-18-02TD VNU–HCMC Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuc D. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nguyen, H., Nguyen, H.H., Hoang, T., Choi, D., Nguyen, T.D. (2016). A Generalized Authentication Scheme for Mobile Phones Using Gait Signals. In: Obaidat, M., Lorenz, P. (eds) E-Business and Telecommunications. ICETE 2015. Communications in Computer and Information Science, vol 585. Springer, Cham. https://doi.org/10.1007/978-3-319-30222-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30222-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30221-8

  • Online ISBN: 978-3-319-30222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics