Filling the Complexity Gaps for Colouring Planar and Bounded Degree Graphs | SpringerLink
Skip to main content

Filling the Complexity Gaps for Colouring Planar and Bounded Degree Graphs

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9538))

Included in the following conference series:

Abstract

We consider a natural restriction of the List Colouring problem, k-Regular List Colouring, which corresponds to the List Colouring problem where every list has size exactly k. We give a complete classification of the complexity of k-Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs and to planar graphs with no 4-cycles and no 5-cycles. We also give a complete classification of the complexity of this problem and a number of related colouring problems for graphs with bounded maximum degree.

First and last author supported by EPSRC (EP/K025090/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12, 125–134 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Appel, K., Haken, W.: Every planar map is four colorable, Contemporary Mathematics 89, AMS Bookstore (1989)

    Google Scholar 

  3. Brooks, R.L.: On colouring the nodes of a network. Math. Proc. Camb. Philos. Soc. 37, 194–197 (1941)

    Article  MathSciNet  Google Scholar 

  4. Chen, M., Montassier, M., Raspaud, A.: Some structural properties of planar graphs and their applications to 3-choosability. Discrete Math. 312, 362–373 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chlebík, M., Chlebíková, J.: Hard coloring problems in low degree planar bipartite graphs. Discrete Appl. Math. 154, 1960–1965 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chudnovsky, M.: Coloring graphs with forbidden induced subgraphs. Proc. ICM IV, 291–302 (2014)

    Google Scholar 

  7. Dvořák, Z., Lidický, B., Škrekovski, R.: Planar graphs without 3-, 7-, and 8-cycles are 3-choosable. Discrete Math. 309, 5899–5904 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Emden-Weinert, T., Hougardy, S., Kreuter, B.: Uniquely colourable graphs and the hardness of colouring graphs of large girth. Comb. Probab. Comput. 7, 375–386 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. In: Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979), Congress. Numer., XXVI, pp. 125–157. Winnipeg, Man., Utilitas Math. (1980)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified \({\sf NP}\)-complete graph problems. In: Proceedings of STOC, pp. 47–63 (1974)

    Google Scholar 

  11. Golovach, P.A., Heggernes, P., van ’t Hof, P., Paulusma, D.: Choosability on \(H\)-free graphs. Inform. Process. Lett. 113, 107–110 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of colouring graphs with forbidden subgraphs, Manuscript, arXiv:1407.1482v4 (2014)

  13. Gutner, S.: The complexity of planar graph choosability. Discrete Math. 159, 119–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kratochvíl, J.: Precoloring extension with fixed color bound. Acta Mathematica Universitatis Comenianae 62, 139–153 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Kratochvíl, J., Tuza, Z.: Algorithmic complexity of list colourings. Discrete Appl. Math. 50, 297–302 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lam, P.C.B., Xu, B., Liu, J.: The 4-choosability of plane graphs without 4-cycles. J. Comb. Theory Ser. B 76, 117–126 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Molloy, M., Reed, B.: Colouring graphs when the number of colours is almost the maximum degree. J. Comb. Theory Ser. B 109, 134–195 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Montassier, M.: A note on the not 3-choosability of some families of planar graphs. Inform. Process. Lett. 99, 68–71 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Montassier, M., Raspaud, A., Wang, W.: Bordeaux 3-color conjecture and 3-choosability. Discrete Math. 306, 573–579 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thomassen, C.: Every planar graph is \(5\)-choosable. J. Comb. Theory Ser. B 62, 180–181 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thomassen, C.: 3-List-coloring planar graphs of girth 5. J. Comb. Theory Ser. B 64, 101–107 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. In: Diskret. Analiz., no. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem, vol. 101, pp. 3–10 (1976)

    Google Scholar 

  23. Vizing, V.G.: Vertex colorings with given colors. Diskret. Analiz. 29, 3–10 (1976)

    MathSciNet  MATH  Google Scholar 

  24. Voigt, M.: List colourings of planar graphs. Discrete Math. 120, 215–219 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Voigt, M.: A not 3-choosable planar graph without 3-cycles. Discrete Math. 146, 325–328 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Voigt, M.: A non-3-choosable planar graph without cycles of length 4 and 5. Discrete Math. 307, 1013–1015 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Y., Lu, H., Chen, M.: Planar graphs without cycles of length 4, 5, 8, or 9 are 3-choosable. Discrete Math. 310, 147–158 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Y., Lu, H., Chen, M.: Planar graphs without cycles of length 4, 7, 8, or 9 are 3-choosable. Discrete Appl. Math. 159, 232–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, D.-Q., Wen, Y.-P., Wang, K.-L.: A smaller planar graph without 4-, 5-cycles and intersecting triangles that is not 3-choosable. Inform. Process. Lett. 108, 87–89 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Steven Kelk for helpful comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dabrowski, K.K., Dross, F., Johnson, M., Paulusma, D. (2016). Filling the Complexity Gaps for Colouring Planar and Bounded Degree Graphs. In: Lipták, Z., Smyth, W. (eds) Combinatorial Algorithms. IWOCA 2015. Lecture Notes in Computer Science(), vol 9538. Springer, Cham. https://doi.org/10.1007/978-3-319-29516-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29516-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29515-2

  • Online ISBN: 978-3-319-29516-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics