Solving Manufacturing Cell Design Problems Using a Shuffled Frog Leaping Algorithm | SpringerLink
Skip to main content

Abstract

The manufacturing Cell Design Problem (MCDP) is a well-known problem for lines of manufacture where the main goal is to minimize the inter-cell moves. To solve the MCDP we employ the Shuffled Frog Leaping Algorithm (SFLA), which is a metaheuristic inspired on the natural memetic features of frogs. The frog tries to leap all over the search space for a better result until the stopping criteria is met. The obtained results are compared with previous approaches of the algorithm to test the real efficiency of our proposed SFLA. The results show that the proposed algorithm produces optimal solutions for all the 50 studied instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eusuff, M., Lansey, K.: Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Resour. Plan Manag. 129, 210–225 (2003)

    Article  Google Scholar 

  2. Burbidge, J.L.: Production flow analysis. Prod. Eng. 42(12), 742–752 (1963)

    Article  Google Scholar 

  3. Kusiak, A.: The part families problem in flexible manufacturing systems. Ann. Oper. Res. 3, 279–300 (1985)

    Article  Google Scholar 

  4. Xambre, A.R., Vilarinho, P.M.: A simulated annealing approach for manufacturing cell formation with multiple identical machines. Eur. J. Oper. Res. 151, 434–446 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shargal, M., Shekhar, S., Irani, S.A.: Evaluation of search algorithms and clustering efficiency measures for machine-part matrix clustering. IIE Trans. 27(1), 43–59 (1995)

    Article  Google Scholar 

  6. Seifoddini, H., Hsu, C.-P.: Comparative study of similarity coefficients and clustering algorithms in cellular manufacturing. J. Manuf. Syst. 13(2), 119–127 (1994)

    Article  Google Scholar 

  7. Srinivasan, G.: A clustering algorithm for machine cell formation in group technology using minimum spanning tree. Int. J. Prod. Res. 32(9), 2149–2158 (1994)

    Article  MATH  Google Scholar 

  8. Deutsch, S.J., Freeman, S.F., Helander, M.: Manufacturing cell formation using an improved p-median model. Comput. Ind. Eng. 34(1), 135–146 (1998)

    Article  Google Scholar 

  9. Atmani, A., Lashkari, R.S., Caron, R.J.: A mathematical programming approach to joint cell formation and operation allocation in cellular manufacturing. Int. J. Prod. Res. 33(1), 1–15 (1995)

    Article  MATH  Google Scholar 

  10. Adil, G.K., Rajamani, D., Strong, D.: A mathematical model for cell formation considering investment and operational costs. Eur. J. Oper. Res. 69(3), 330–341 (1993)

    Article  MATH  Google Scholar 

  11. Purcheck, G.: A linear-programming method for the combinatorial grouping of an incomplete set. J. Cybern. 5, 51–58 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Olivia-Lopez, E., Purcheck, G.: Load balancing for group technology planning and control. Int. J. MTDR 19, 259–268 (1979)

    Google Scholar 

  13. Boctor, F.F.: A linear formulation of the machine-part cell formation problem. Int. J. Prod. Res. 29(2), 343–356 (1991)

    Article  Google Scholar 

  14. Soto, R., Kjellerstrand, H.: Durn, O., Crawford, B., Monfroy, E., Paredes, F.: Cell formation in group technology using constraint programming and Boolean satisfiability. Expert Syst. Appl. 39, 11423–11427 (2012)

    Google Scholar 

  15. Durán, O., Rodriguez, N., Consalter, L.: Collaborative particle swarm optimization with a data mining technique for manufacturing cell design. Expert Syst. Appl. 37(2), 1563–1567 (2010)

    Article  Google Scholar 

  16. Wu, T., Chang, C., Chung, S.: A simulated annealing algorithm for manufacturing cell formation problems. Expert Syst. Appl. 34(3), 1609–1617 (2008)

    Article  Google Scholar 

  17. Venugopal, V., Narendran, T.T.: A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Comput. Indu. Eng. 22(4), 469–480 (1992)

    Article  Google Scholar 

  18. Gupta, Y., Gupta, M., Kumar, A., Sundaram, C.: A genetic algorithm-based approach to cell composition and layout design problems. Int. J. Prod. Res. 34(2), 447–482 (1996)

    Article  MATH  Google Scholar 

  19. Oliveira, S., Ribeiro, J.F.F., Seok, S.C.: A spectral clustering algorithm for manufacturing cell formation. Comput. Ind. Eng. 57(3), 1008–1014 (2009)

    Article  Google Scholar 

  20. Bhattacharjee, K.K., Sarmah, S.: Shuffled frog leaping algorithm and its application to 0/1 knapsack problem. Appl. Soft Comput. 19, 252–263 (2014)

    Google Scholar 

  21. Lion, S., Atiquzzaman, M.: Optimal design of water distribution network using shuffled complex evolution. J. Instrum. Eng. 44, 93–117 (2004)

    Google Scholar 

Download references

Acknowledgments

Ricardo Soto is supported by Grant CONICYT/FONDECYT/INICIACION/11130459, Broderick Crawford is supported by Grant CONICYT/FONDECYT/1140897, and Fernando Paredes is supported by Grant CONICYT/FONDECYT/1130455.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Soto, R., Crawford, B., Vega, E., Johnson, F., Paredes, F. (2016). Solving Manufacturing Cell Design Problems Using a Shuffled Frog Leaping Algorithm. In: Gaber, T., Hassanien, A., El-Bendary, N., Dey, N. (eds) The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt. Advances in Intelligent Systems and Computing, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-319-26690-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26690-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26688-6

  • Online ISBN: 978-3-319-26690-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics