Multi-distinctive MSER Features and Their Descriptors: A Low-Complexity Tool for Image Matching | SpringerLink
Skip to main content

Multi-distinctive MSER Features and Their Descriptors: A Low-Complexity Tool for Image Matching

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9386))

Abstract

The paper proposes multi-distinctive MSER features (md-MSER) which are MSER keypoints combined with a number of encompassed keypoints of another type, which should also be affine-invariants (e.g. Harris-Affine keypoints) to maintain the invariance of the proposed method. Such a bundle of keypoints is jointly represented by the corresponding number of SIFT-based descriptors which characterize both visual and spatial properties of md-MSERs. Therefore, matches between individual md-MSER features indicate both visual and configurational similarities so that true feature correspondences can be established (at least in some applications) without the verification of spatial consistencies (i.e. the computational costs of detecting contents visually similar in a wider context are significantly reduced). The paper briefly presents the principles of building and representing md-MSER features. Then, performances of md-MSER-based algorithms are experimentally evaluated in two benchmark scenarios of image matching and retrieval. In particular, md-MSER algorithms are compared to typical alternatives based on other affine-invariant keypoints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: Proc. IEEE Conf. CVPR 2012, pp. 2911–2918 (2012)

    Google Scholar 

  2. Chum, O., Matas, J.: Large-scale discovery of spatially related images. IEEE PAMI 32(2), 371–377 (2010)

    Article  Google Scholar 

  3. Chum, O., Perdoch, M., Matas, J.: Geometric min-hashing: finding a (thick) needle in a haystack. In: Proc. IEEE Conf. CVPR 2009, pp. 17–24 (2009)

    Google Scholar 

  4. Kristensen, F., MacLean, W.: Real-time extraction of maximally stable extremal regions on an FPGA. In: Proc. IEEE Symp. ISCAS 2007, pp. 165–168 (2007)

    Google Scholar 

  5. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  6. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, pp. 384–393 (2002)

    Google Scholar 

  7. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. PAMI 27, 1615–1630 (2005)

    Article  Google Scholar 

  8. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision 65, 43–72 (2005)

    Article  Google Scholar 

  9. Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proc. IEEE Conf. CVPR 2006, vol. 2, pp. 2161–2168 (2006)

    Google Scholar 

  10. Romberg, S., August, M., Ries, C.X., Lienhart, R.: Robust feature bundling. In: Lin, W., Xu, D., Ho, A., Wu, J., He, Y., Cai, J., Kankanhalli, M., Sun, M.-T. (eds.) PCM 2012. LNCS, vol. 7674, pp. 45–56. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Salahat, E., Saleh, H., Sluzek, A., Al-Qutayri, M., Mohammed, B., Ismail, M.: Architecture and method for real-time parallel detection and extraction of maximally stable extremal regions (MSERS). U.S. Patent Application No. 14/482,629 (2014)

    Google Scholar 

  12. Śluzek, A.: Contextual descriptors improving credibility of keypoint matching. In: Proc. 13th Int. Conf. ICARCV 2014, pp. 117–122 (2014)

    Google Scholar 

  13. Śluzek, A.: Extended keypoint description and the corresponding improvements in image retrieval. In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014 Workshops. LNCS, vol. 9008, pp. 698–709. Springer, Heidelberg (2015)

    Google Scholar 

  14. Stewénius, H., Gunderson, S.H., Pilet, J.: Size matters: exhaustive geometric verification for image retrieval accepted for ECCV 2012. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 674–687. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Tolias, M., Jegou, H.: Visual query expansion with or without geometry: refining local descriptors by feature aggregation. Pattern Recognition 47, 3466–3476 (2014)

    Article  Google Scholar 

  16. Wu, Z., Ke, Q., Isard, M., Sun, J.: Bundling features for large scale partial-duplicate web image search. In: Proc. IEEE Conf. CVPR 2009, pp. 25–32. Miami Beach (2009)

    Google Scholar 

  17. Zhang, Y., Jia, Z., Chen, T.: Image retrieval with geometry-preserving visual phrases. In: Proc. IEEE Conf. CVPR 2011, pp. 809–816 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Śluzek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Śluzek, A. (2015). Multi-distinctive MSER Features and Their Descriptors: A Low-Complexity Tool for Image Matching. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-319-25903-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25903-1_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25902-4

  • Online ISBN: 978-3-319-25903-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics