Abstract
The paper proposes multi-distinctive MSER features (md-MSER) which are MSER keypoints combined with a number of encompassed keypoints of another type, which should also be affine-invariants (e.g. Harris-Affine keypoints) to maintain the invariance of the proposed method. Such a bundle of keypoints is jointly represented by the corresponding number of SIFT-based descriptors which characterize both visual and spatial properties of md-MSERs. Therefore, matches between individual md-MSER features indicate both visual and configurational similarities so that true feature correspondences can be established (at least in some applications) without the verification of spatial consistencies (i.e. the computational costs of detecting contents visually similar in a wider context are significantly reduced). The paper briefly presents the principles of building and representing md-MSER features. Then, performances of md-MSER-based algorithms are experimentally evaluated in two benchmark scenarios of image matching and retrieval. In particular, md-MSER algorithms are compared to typical alternatives based on other affine-invariant keypoints.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: Proc. IEEE Conf. CVPR 2012, pp. 2911–2918 (2012)
Chum, O., Matas, J.: Large-scale discovery of spatially related images. IEEE PAMI 32(2), 371–377 (2010)
Chum, O., Perdoch, M., Matas, J.: Geometric min-hashing: finding a (thick) needle in a haystack. In: Proc. IEEE Conf. CVPR 2009, pp. 17–24 (2009)
Kristensen, F., MacLean, W.: Real-time extraction of maximally stable extremal regions on an FPGA. In: Proc. IEEE Symp. ISCAS 2007, pp. 165–168 (2007)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, pp. 384–393 (2002)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. PAMI 27, 1615–1630 (2005)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision 65, 43–72 (2005)
Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proc. IEEE Conf. CVPR 2006, vol. 2, pp. 2161–2168 (2006)
Romberg, S., August, M., Ries, C.X., Lienhart, R.: Robust feature bundling. In: Lin, W., Xu, D., Ho, A., Wu, J., He, Y., Cai, J., Kankanhalli, M., Sun, M.-T. (eds.) PCM 2012. LNCS, vol. 7674, pp. 45–56. Springer, Heidelberg (2012)
Salahat, E., Saleh, H., Sluzek, A., Al-Qutayri, M., Mohammed, B., Ismail, M.: Architecture and method for real-time parallel detection and extraction of maximally stable extremal regions (MSERS). U.S. Patent Application No. 14/482,629 (2014)
Śluzek, A.: Contextual descriptors improving credibility of keypoint matching. In: Proc. 13th Int. Conf. ICARCV 2014, pp. 117–122 (2014)
Śluzek, A.: Extended keypoint description and the corresponding improvements in image retrieval. In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014 Workshops. LNCS, vol. 9008, pp. 698–709. Springer, Heidelberg (2015)
Stewénius, H., Gunderson, S.H., Pilet, J.: Size matters: exhaustive geometric verification for image retrieval accepted for ECCV 2012. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 674–687. Springer, Heidelberg (2012)
Tolias, M., Jegou, H.: Visual query expansion with or without geometry: refining local descriptors by feature aggregation. Pattern Recognition 47, 3466–3476 (2014)
Wu, Z., Ke, Q., Isard, M., Sun, J.: Bundling features for large scale partial-duplicate web image search. In: Proc. IEEE Conf. CVPR 2009, pp. 25–32. Miami Beach (2009)
Zhang, Y., Jia, Z., Chen, T.: Image retrieval with geometry-preserving visual phrases. In: Proc. IEEE Conf. CVPR 2011, pp. 809–816 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Śluzek, A. (2015). Multi-distinctive MSER Features and Their Descriptors: A Low-Complexity Tool for Image Matching. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-319-25903-1_58
Download citation
DOI: https://doi.org/10.1007/978-3-319-25903-1_58
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25902-4
Online ISBN: 978-3-319-25903-1
eBook Packages: Computer ScienceComputer Science (R0)