Abstract
Textual entailment has been proposed as a unifying generic framework for modeling language variability and semantic inference in different Natural Language Processing (NLP) tasks. By evaluating on NTCIR-11 RITE3 Simplified Chinese subtask data set, this paper firstly demonstrates and compares the performance of Chinese textual entailment recognition models that combine different lexical, syntactic, and semantic features. Then a word embedding based lexical entailment module is added to enhance classification ability of our system further. The experimental results show that the word embedding for lexical semantic relation reasoning is effective and efficient in Chinese textual entailment.
Similar content being viewed by others
Notes
References
Dagan, I., Glickman, O.: Probabilistic textual entailment: generic applied modeling of language variability. In: PASCAL Workshop on Learning Methods for Text Understanding and Mining, Grenoble, France (2004)
Tatu, M., Moldovan, D.: COGEX at RTE 3. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, Prague, Czech Republic, pp. 22–27 (2007)
Bos, J.: Is there a place for logic in recognizing textual entailment? Linguist. Issues Lang. Technol. 9, 1–18 (2013)
Harmeling, S.: Inferring textual entailment with a probabilistically sound calculus. Nat. Lang. Eng. 15(4), 459–477 (2009)
Quinonero Candela, J., Dagan, I., Magnini, B., et al.: MLCW 2005. LNCS, vol. 3944. Springer, Heidelberg (2006)
Burrows, S., Potthast, M., Stein, B.: Paraphrase acquisition via crowdsourcing and machine learning. ACM Trans. Intell. Syst. Technol. (TIST) 4(3), 43 (2013)
Bar-Haim, R., Berant, J., Dagan, I.: A compact forest for scalable inference over entailment and paraphrase rules. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, vol. 3. Association for Computational Linguistics, pp. 1056–1065 (2009)
Tian, J.-L., Zhao, W.: Words similarity algorithm based on tongyici CiLin in semantic web adaptive learning system. J. Jilin Univ. 28(6), 602–608 (2010)
Liu, M., Li, Y., Ji, D.: Event semantic feature based chinese textual entailment recognition. J. Chin. Inf. Process. 27(5), 129–136 (2013)
Pedregosa, F., et al.: Scikit-learn: machine learning in python. JMLR 12, 2825–2830 (2011)
Matsuyoshi, S., Miyao, Y., Shibata, T., Lin, C.-J., Shih, C.-W., Watanabe, Y., Mitamura, T.: Overview of the NTCIR-11 recognizing inference in TExt and validation (RITE-VAL) task. In: Proceedings of the 11th NTCIR Conference, Tokyo, Japan (2014)
Zhang, Z., Yao, D., Chen, S., Ma, H.: Chinese textual entailment recognition based on syntactic tree clipping. In: Sun, M., Liu, Y., Zhao, J. (eds.) CCL and NLP-NABD 2014. LNCS, vol. 8801, pp. 83–94. Springer, Heidelberg (2014)
Turney, P.D., Mohammad, S.M.: Experiments with three approaches to recognizing lexical entailment. Nat. Lang. Eng. 1–40 (2013)
Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Fu, R., Guo, J., Qin, B., et al.: Learning semantic hierarchies via word embeddings. In: Proceedings of the 52th Annual Meeting of the Association for Computational Linguistics: Long Papers, vol. 1 (2014)
Socher, R., Huang, E.H., Pennin, J., et al.: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: Advances in Neural Information Processing Systems, pp. 801–809 (2011)
Zhitomirsky-Geffet, M., Dagan, I.: Bootstrapping distributional feature vector quality. Comput. Linguist. 35(3), 435–461 (2009)
Acknowledgements
This work is supported by grants from National Natural Science Foundation of China (No. 61163039, No. 61163036, No. 61363058) and the Young Teacher Research Ability Enhancement Project of Northwest Normal University of China (NWNU-LKQN-10-2, NWNU-LKQN-13-23).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhang, Z., Yao, D., Pang, Y., Lu, X. (2015). Chinese Textual Entailment Recognition Enhanced with Word Embedding. In: Sun, M., Liu, Z., Zhang, M., Liu, Y. (eds) Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. CCL NLP-NABD 2015 2015. Lecture Notes in Computer Science(), vol 9427. Springer, Cham. https://doi.org/10.1007/978-3-319-25816-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-25816-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25815-7
Online ISBN: 978-3-319-25816-4
eBook Packages: Computer ScienceComputer Science (R0)