An Interactive Method Based on Random Walk for Segmentation of Facial Nerve in NMR Images | SpringerLink
Skip to main content

An Interactive Method Based on Random Walk for Segmentation of Facial Nerve in NMR Images

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9428))

Included in the following conference series:

  • 2385 Accesses

Abstract

In this paper, a nerves segmentation algorithm is presented based on the combination of hessian matrix and random walk techniques. We used hessian matrix to enhance the nerve area, then used morphological operations for nerve skeleton extraction and got the seed for random walk. Our algorithm has three phases, enhancement of nerve area on hessian matrix, extraction of skeleton points on enhanced area, finally segmentation of nerves. The experimental results show that the proposed method works well in segmentation of the nerve in NMR images with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Foresta, E., Torroni, A., Di-Nardo, F., De-Waure, C., Poscia, A., Gasparini, G., Matteo-Marianetti, T., Pelo, S.: Pleomorphic Adenoma and Benign Parotid Tumors: Extracapsular Dissection vs Superficial Parotidectomy-Review of Literature and Meta-analysis. Or. Surg. Or. Med. Or. Pa. 117, 663–676 (2014)

    Article  Google Scholar 

  2. Woods, J.E., Chong, G.C., Beahrs, O.H.: Experience with 1,360 Primary Parotid Tumors. Am. J. Surg. 130, 460–462 (1975)

    Article  Google Scholar 

  3. Arshad, A.R.: Benign Parotid Lesions: Is near total Parotidectromy Justified? Ann. Acad. Med. Singap. 35, 889–891 (2006)

    Google Scholar 

  4. Yi-Fan, L., Ye-Hai, L., Wen-Wen, C., Yi, Z., Jing, W.: Research Advancement on the Clinical Anatomy of Cervical Branch and Marginal Mandibular Branch of the Facial Nerve. Anat. Clin. 16, 75–77 (2011)

    Google Scholar 

  5. Li-Min, L., Jing-Qiu, B., Chun-Ming, L., Xiao, M., Zhong-Hong, Y.: A Comparative Study of Three Methods of Facial Nerve Contrary Dissection in Parotid Gland Surgery. Chin. J. Oral. Maxil. Surg. 15, 67–68 (2005)

    Google Scholar 

  6. Yuan, Y., Yi-shan, L., Albert, C.S.C.: VE-LLI-VO: Vessel Enhancement Using Local Line Integrals and Variational Optimization. IEEE T. Med. Imaging 20, 1912–1924 (2011)

    Google Scholar 

  7. Wink, O., Niessen, W.J., Viergever, M.A.: Multiscale Vessel Tracking. IEEE T. Med. Imaging 23, 130–133 (2004)

    Article  Google Scholar 

  8. Sofka, M., Stewart, C.V.: Retinal Vessel Centerline Extraction using Multiscale Matched Filters, Confidence and Edge Measures. IEEE T. Med. Imaging 25, 1531–1546 (2006)

    Article  Google Scholar 

  9. Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of Blood Vessels from Red-free and Fluorescein Retinal Images. Med. Imag. Anal. 11, 47–61 (2007)

    Article  Google Scholar 

  10. Koller, T.M., Gerig, G., Székely, G., Dettwiler, D.: Multiscale detection of curvilinear structures in 2-D and 3-D image data. In: 5th IEEE International Conference on Computer Vision, pp. 864–869. IEEE Press, Cambridge (1995)

    Google Scholar 

  11. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., Kikinis, R.: Three Dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Imag. Anal. 2, 143–168 (1998)

    Article  Google Scholar 

  13. Frangi, A.F., Niessen, W.J., Hoogeveen, R.M., Van Walsum, T., Viergever, M.A.: Quantitation of vessel morphology from 3D MRI. In: 2nd International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 358–367. Springer, Cambridge (1998)

    Google Scholar 

  14. Leo, G.: Random Walks for Image Segmentation. IEEE T. Pattern Anal. 28, 1768–1783 (2006)

    Article  Google Scholar 

  15. Meila, M., Shi, J.: Learning segmentation by random walk. In: 15th International Conference on Neural Information Processing Systems, Vancouver, pp. 873–879 (2001)

    Google Scholar 

  16. Meila, M., Shi, J.: A random walks view of spectral segmentation. In: the 8th International Workshop On Artificial Intelligence And Statistics, Florida, pp. 575–583 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Z., Ma, Y., Guo, L. (2015). An Interactive Method Based on Random Walk for Segmentation of Facial Nerve in NMR Images. In: Yang, J., Yang, J., Sun, Z., Shan, S., Zheng, W., Feng, J. (eds) Biometric Recognition. CCBR 2015. Lecture Notes in Computer Science(), vol 9428. Springer, Cham. https://doi.org/10.1007/978-3-319-25417-3_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25417-3_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25416-6

  • Online ISBN: 978-3-319-25417-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics