Exact Bounds for Distributed Graph Colouring | SpringerLink
Skip to main content

Exact Bounds for Distributed Graph Colouring

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9439))

Abstract

We prove exact bounds on the time complexity of distributed graph colouring. If we are given a directed path that is properly coloured with n colours, by prior work it is known that we can find a proper 3-colouring in \(\frac{1}{2} \log^{*}(n) \pm O(1)\) communication rounds. We close the gap between upper and lower bounds: we show that for infinitely many n the time complexity is precisely \(\frac{1}{2} \log^{*} n\) communication rounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Åstrand, M., Suomela, J.: Fast distributed approximation algorithms for vertex cover and set cover in anonymous networks. In: Proc. 22nd Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2010), pp. 294–302. ACM Press (2010)

    Google Scholar 

  2. Barenboim, L., Elkin, M.: Distributed graph coloring: Fundamentals and recent Developments. Morgan & Claypool (2013)

    Google Scholar 

  3. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Information and Control 70(1), 32–53 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  5. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations in planar graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78–92. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Fich, F.E., Ramachandran, V.: Lower bounds for parallel computation on linked structures. In: Proc. 2nd Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 1990), pp. 109–116. ACM Press (1990)

    Google Scholar 

  7. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with advice: Information sensitivity of graph coloring. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Garay, J.A., Kutten, S., Peleg, D.: A sublinear time distributed algorithm for minimum-weight spanning trees. SIAM Journal on Computing 27(1), 302–316 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-breaking in sparse graphs. SIAM Journal on Discrete Mathematics 1(4), 434–446 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In: Proc. 25th Annual ACM Symposium on Principles of Distributed Computing (PODC 2006), pp. 7–15. ACM Press (2006)

    Google Scholar 

  11. Laurinharju, J., Suomela, J.: Brief announcement: Linial’s lower bound made easy. In: Proc. 33rd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2014), pp. 377–378. ACM Press (2014)

    Google Scholar 

  12. Lenzen, C., Patt-Shamir, B.: Improved distributed Steiner forest construction. In: Proc. 33rd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2014), pp. 262–271. ACM Press (2014)

    Google Scholar 

  13. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Naor, M.: A lower bound on probabilistic algorithms for distributive ring coloring. SIAM Journal on Discrete Mathematics 4(3), 409–412 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Computing 24(6), 1259–1277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks. Distributed Computing 14(2), 97–100 (2001)

    Article  Google Scholar 

  17. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Book  MATH  Google Scholar 

  18. Rybicki, J.: Exact bounds for distributed graph colouring. Master’s thesis, University of Helsinki, May 2011. http://urn.fi/URN:NBN:fi-fe201106091715 .

  19. Suomela, J.: Distributed Algorithms (2014). http://users.ics.aalto.fi/suomela/da/

  20. Szegedy, M., Vishwanathan, S.: Locality based graph coloring. In: Proc. 25th Annual ACM Symposium on Theory of Computing (STOC 1993), pp. 201–207. ACM Press (1993)

    Google Scholar 

  21. Wattenhofer, R.: Lecture notes on principles of distributed computing (2013). http://dcg.ethz.ch/lectures/podc_allstars/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rybicki, J., Suomela, J. (2015). Exact Bounds for Distributed Graph Colouring. In: Scheideler, C. (eds) Structural Information and Communication Complexity. SIROCCO 2015. Lecture Notes in Computer Science(), vol 9439. Springer, Cham. https://doi.org/10.1007/978-3-319-25258-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25258-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25257-5

  • Online ISBN: 978-3-319-25258-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics