Abstract
We prove exact bounds on the time complexity of distributed graph colouring. If we are given a directed path that is properly coloured with n colours, by prior work it is known that we can find a proper 3-colouring in \(\frac{1}{2} \log^{*}(n) \pm O(1)\) communication rounds. We close the gap between upper and lower bounds: we show that for infinitely many n the time complexity is precisely \(\frac{1}{2} \log^{*} n\) communication rounds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Åstrand, M., Suomela, J.: Fast distributed approximation algorithms for vertex cover and set cover in anonymous networks. In: Proc. 22nd Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2010), pp. 294–302. ACM Press (2010)
Barenboim, L., Elkin, M.: Distributed graph coloring: Fundamentals and recent Developments. Morgan & Claypool (2013)
Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Information and Control 70(1), 32–53 (1986)
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press, Cambridge (1990)
Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations in planar graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78–92. Springer, Heidelberg (2008)
Fich, F.E., Ramachandran, V.: Lower bounds for parallel computation on linked structures. In: Proc. 2nd Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 1990), pp. 109–116. ACM Press (1990)
Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with advice: Information sensitivity of graph coloring. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Heidelberg (2007)
Garay, J.A., Kutten, S., Peleg, D.: A sublinear time distributed algorithm for minimum-weight spanning trees. SIAM Journal on Computing 27(1), 302–316 (1998)
Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-breaking in sparse graphs. SIAM Journal on Discrete Mathematics 1(4), 434–446 (1988)
Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In: Proc. 25th Annual ACM Symposium on Principles of Distributed Computing (PODC 2006), pp. 7–15. ACM Press (2006)
Laurinharju, J., Suomela, J.: Brief announcement: Linial’s lower bound made easy. In: Proc. 33rd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2014), pp. 377–378. ACM Press (2014)
Lenzen, C., Patt-Shamir, B.: Improved distributed Steiner forest construction. In: Proc. 33rd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2014), pp. 262–271. ACM Press (2014)
Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)
Naor, M.: A lower bound on probabilistic algorithms for distributive ring coloring. SIAM Journal on Discrete Mathematics 4(3), 409–412 (1991)
Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Computing 24(6), 1259–1277 (1995)
Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks. Distributed Computing 14(2), 97–100 (2001)
Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia (2000)
Rybicki, J.: Exact bounds for distributed graph colouring. Master’s thesis, University of Helsinki, May 2011. http://urn.fi/URN:NBN:fi-fe201106091715 .
Suomela, J.: Distributed Algorithms (2014). http://users.ics.aalto.fi/suomela/da/
Szegedy, M., Vishwanathan, S.: Locality based graph coloring. In: Proc. 25th Annual ACM Symposium on Theory of Computing (STOC 1993), pp. 201–207. ACM Press (1993)
Wattenhofer, R.: Lecture notes on principles of distributed computing (2013). http://dcg.ethz.ch/lectures/podc_allstars/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Rybicki, J., Suomela, J. (2015). Exact Bounds for Distributed Graph Colouring. In: Scheideler, C. (eds) Structural Information and Communication Complexity. SIROCCO 2015. Lecture Notes in Computer Science(), vol 9439. Springer, Cham. https://doi.org/10.1007/978-3-319-25258-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-25258-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25257-5
Online ISBN: 978-3-319-25258-2
eBook Packages: Computer ScienceComputer Science (R0)