Abstract
We present the Policy and Goal Recognizer (PaGR), a case-based system for multiagent keyhole recognition. PaGR is a knowledge recognition component within a decision-making agent that controls simulated unmanned air vehicles in Beyond Visual Range combat. PaGR stores in a case the goal, observations, and policy of a hostile aircraft, and uses cases to recognize the policies and goals of newly-observed hostile aircraft. In our empirical study of PaGR’s performance, we report evidence that knowledge of an adversary’s goal improves policy recognition. We also show that PaGR can recognize when its assumptions about the hostile agent’s goal are incorrect, and can often correct these assumptions. We show that this ability improves PaGR’s policy recognition performance in comparison to a baseline algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carberry, S.: Techniques for plan recognition. User Model. User-Adap. Inter. 11(1–2), 31–48 (2001)
Borck, H., Karneeb, J., Alford, R., Aha, D.W.: Case-based behavior recognition in beyond visual range air combat. In: Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference. AAAI Press (2015)
Muñoz-Avila, H., Jaidee, U., Aha, D.W., Carter, E.: Goal-driven autonomy with case-based reasoning. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 228–241. Springer, Heidelberg (2010)
Molineaux, M., Klenk, M., Aha, D.W.: Goal-driven autonomy in a navy strategy simulation. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI Press (2010)
Borck, H., Karneeb, J., Alford, R., Aha, D.W.: Case-based behavior recognition to facilitate planning in unmanned air vehicles. In: Vattam, S.S., Aha, D.W., eds.: Case-Based Agents: Papers from the ICCBR Workshop, Technical report. University College Cork, Cork, Ireland (2014)
Sukthankar, I.G., Goldman, R., Geib, C., Pynadath, D., Bui, H.: An introduction to plan, activity, and intent recognition. In: Sukthankar, I.G., Goldman, R., Geib, C., Pynadath, D., Bui, H. (eds.) Plan, Activity, and Intent Recognition. Elsevier (2014)
Vattam, S.S., Aha, D.W., Floyd, M.: Case-based plan recognition using action sequence graphs. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765, pp. 495–510. Springer, Heidelberg (2014)
Ontañón, S., Lee, Y.-C., Snodgrass, S., Bonfiglio, D., Winston, F.K., McDonald, C., Gonzalez, A.J.: Case-based prediction of teen driver behavior and skill. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765, pp. 375–389. Springer, Heidelberg (2014)
Fagundes, M.S., Meneguzzi, F., Bordini, R.H., Vieira, R.: Dealing with ambiguity in plan recognition under time constraints. In: Proceedings of the International Conference on Autonomous Agents and Multi-Agent Systems, pp. 389–396. ACM Press (2014)
Alford, R., Borck, H., Karneeb, J., Aha, D.W.: Active behavior recognition in beyond visual range combat. In: Proceedings of the Third Conference on Advances in Cognitive Systems, Cognitive Systems Foundation (2015)
Laviers, K., Sukthankar, G.: A real-time opponent modeling system for Rush Football. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp. 2476–2481. AAAI Press (2011)
Molineaux, M., Aha, D.W., Sukthankar, G.: Beating the defense: using plan recognition to inform learning agents. In: Proceedings of the Twenty-Second International Florida Artificial Intelligence Research Society Conference, pp. 337–343. AAAI Press (2009)
Levine, S.J., Williams, B.C.: Concurrent plan recognition and execution for human-robot teams. In: Twenty-Fourth International Conference on Automated Planning and Scheduling. ACM Press (2014)
Banerjee, B., Lyle, J., Kraemer, L.: The complexity of multi-agent plan recognition. Auton. Agent. Multi-Agent Syst. 29(1), 40–72 (2015)
Zhuo, H.H., Li, L.: Multi-agent plan recognition with partial team traces and plan libraries. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp. 484–489. AAAI Press (2011)
Geib, C.W., Goldman, R.P.: Plan recognition in intrusion detection systems. In: Proceedings of the DARPA Information Survivability Conference, pp. 46–55. IEEE Press (2001)
Corchado, J.M., Pavón, J., Corchado, E., Castillo, L.F.: Development of CBR-BDI agents: a tourist guide application. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 547–559. Springer, Heidelberg (2004)
Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-based planning and execution for real-time strategy games. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 164–178. Springer, Heidelberg (2007)
Rubin, J., Watson, I.: On combining decisions from multiple expert imitators for performance. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp. 344–349. AAAI Press (2011)
Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imitating RoboCup players. In: Proceedings of the Twenty-First International Florida Artificial Intelligence Research Society Conference, pp. 251–256. AAAI Press (2008)
Zarka, R., Cordier, A., Egyed-Zsigmond, E., Lamontagne, L., Mille, A.: Similarity measures to compare episodes in modeled traces. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969, pp. 358–372. Springer, Heidelberg (2013)
Sánchez-Marré, M., Cortés, U., Martínez, M., Comas, J., Rodríguez-Roda, I.: An approach for temporal case-based reasoning: episode-based reasoning. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 465–476. Springer, Heidelberg (2005)
Borrajo, D., Roubíčková, A., Serina, I.: Progress in case-based planning. ACM Comput. Surv. 47(2), 1–39 (2015)
Jensen, B., Karneeb, J., Borck, H., Aha, D.: Integrating AFSIM as an internal predictor. Technical report AIC-14-172, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC (2014)
Acknowledgements
Thanks to OSD ASD (R&E) for supporting this research. Thanks also to our subject matter experts for their many contributions and to the reviewers for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Borck, H., Karneeb, J., Floyd, M.W., Alford, R., Aha, D.W. (2015). Case-Based Policy and Goal Recognition. In: Hüllermeier, E., Minor, M. (eds) Case-Based Reasoning Research and Development. ICCBR 2015. Lecture Notes in Computer Science(), vol 9343. Springer, Cham. https://doi.org/10.1007/978-3-319-24586-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-24586-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24585-0
Online ISBN: 978-3-319-24586-7
eBook Packages: Computer ScienceComputer Science (R0)