Abstract
Automatically segmenting organs in monocular laparoscopic images is an important and challenging research objective in computer-assisted intervention. For the uterus this is difficult because of high inter-patient variability in tissue appearance and low-contrast boundaries with the surrounding peritoneum. We present a framework to segment the uterus which is completely automatic, requires only a single monocular image, and does not require a 3D model. Our idea is to use a patient-independent uterus detector to roughly localize the organ, which is then used as a supervisor to train a patient-specific organ segmenter. The segmenter uses a physically-motivated organ boundary model designed specifically for illumination in laparoscopy, which is fast to compute and gives strong segmentation constraints. Our segmenter uses a lightweight CRF that is solved quickly and globally with a single graphcut. On a dataset of 220 images our method obtains a mean DICE score of 92.9%.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Allan, M., Thompson, S., Clarkson, M.J., Ourselin, S., Hawkes, D.J., Kelly, J., Stoyanov, D.: 2D-3D pose tracking of rigid instruments in minimally invasive surgery. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds.) IPCAI 2014. LNCS, vol. 8498, pp. 1–10. Springer, Heidelberg (2014)
Boykov, Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary amp; region segmentation of objects in N-D images. In: ICCV (2001)
Chhatkuli, A., Malti, A., Bartoli, A., Collins, T.: Monocular live image parsing in uterine laparoscopy. In: ISBI (2014)
Collins, T., Bartoli, A.: Towards live monocular 3D laparoscopy using shading and specularity information. In: Abolmaesumi, P., Joskowicz, L., Navab, N., Jannin, P. (eds.) IPCAI 2012. LNCS, vol. 7330, pp. 11–21. Springer, Heidelberg (2012)
Collins, T., Pizarro, D., Bartoli, A., Canis, M., Bourdel, N.: Realtime wide-baseline registration of the uterus in laparoscopic videos using multiple texture maps. In: MIAR (2013)
Collins, T., Pizarro, D., Bartoli, A., Canis, M., Bourdel, N.: Computer-assisted laparoscopic myomectomy by augmenting the uterus with pre-operative MRI data. In: ISMAR (2014)
Dubout, C., Fleuret, F.: Exact acceleration of linear object detectors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 301–311. Springer, Heidelberg (2012)
Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE PAMI (2010)
Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. (2010)
Malti, A., Bartoli, A., Collins, T.: Template-based conformal shape-from-motion-and-shading for laparoscopy. In: Abolmaesumi, P., Joskowicz, L., Navab, N., Jannin, P. (eds.) IPCAI 2012. LNCS, vol. 7330, pp. 1–10. Springer, Heidelberg (2012)
Nosrati, M., Peyrat, J.-M., Abi-Nahed, J., Al-Alao, O., Al-Ansari, A., Abugharbieh, R., Hamarneh, G.: Efficient multi-organ segmentation in multi-view endoscopic videos using pre-op priors. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, Springer, Heidelberg (2014)
Price, B.L., Morse, B.S., Cohen, S.: Geodesic graph cut for interactive image segmentation. In: CVPR (2010)
Prokopetc, K., Collins, T., Bartoli, A.: Automatic detection of the uterus and fallopian tube junctions in laparoscopic images. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 552–563. Springer, Heidelberg (2015)
Rother, C., Kolmogorov, V., Blake, A.: Grabcut - Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics (2004)
Vezhnevets, V., Konushin, V.: Growcut - Interactive multi-label n-d image segmentation by cellular automata. In: GraphiCon (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Collins, T., Bartoli, A., Bourdel, N., Canis, M. (2015). Segmenting the Uterus in Monocular Laparoscopic Images without Manual Input. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-24574-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24573-7
Online ISBN: 978-3-319-24574-4
eBook Packages: Computer ScienceComputer Science (R0)