A Multi-engine Theorem Prover for a Description Logic of Typicality | SpringerLink
Skip to main content

A Multi-engine Theorem Prover for a Description Logic of Typicality

  • Conference paper
  • First Online:
AI*IA 2015 Advances in Artificial Intelligence (AI*IA 2015)

Abstract

We describe DysToPic, a theorem prover for the preferential Description Logic \(\mathcal {ALC}+\mathbf{T}_{min}\).This is a nonmonotonic extension of standard \(\mathcal {ALC}\) based on a typicality operator \(\mathbf{T}\), which enjoys a preferential semantics. DysToPic is a multi-engine Prolog implementation of a labelled, two-phase tableaux calculus for \(\mathcal {ALC}+\mathbf{T}_{min}\) whose basic idea is that of performing these two phases by different machines. The performances of DysToPic are promising, and significantly better than the ones of its predecessor PreDeLo 1.0 recently introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in treating specificity in terminological def. logic. JAR 15(1), 41–68 (1995)

    Article  MATH  Google Scholar 

  2. Beckert, B., Posegga, J.: leanTAP: Lean tableau-based deduction. Journal of Automated Reasoning (JAR) 15(3), 339–358 (1995)

    Article  MATH  Google Scholar 

  3. Bonatti, P., Lutz, C., Wolter, F.: DLs with circumscription. In: KR, pp. 400–410 (2006)

    Google Scholar 

  4. Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: KR, pp. 476–484. AAAI Press, Sidney, September 2008

    Google Scholar 

  5. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 77–90. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Casini, G., Straccia, U.: Defeasible inheritance-based description logics. Journal of Artificial Intelligence Research 48, 415–473 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM ToCL 3(2), 177–225 (2002)

    Article  Google Scholar 

  8. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with DLs for the semantic web. In: KR, pp. 141–151 (2004)

    Google Scholar 

  9. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential description logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 257–272. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: ALC+T: a preferential extension of description logics. Fundamenta Informaticae 96, 341–372 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A tableau calculus for a nonmonotonic extension of \({\cal {EL}}^\bot \). In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 180–195. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A tableau calculus for a nonmonotonic extension of the description logic \(\mathit{DL-Lite}_{\mathit{core}}\). In: Pirrone, R., Sorbello, F. (eds.) AI*IA 2011. LNCS (LNAI), vol. 6934, pp. 164–176. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning abouttypicality in low complexity DLs: the logics \({\cal {EL}}^{\bot } {\mathbf{T}_{\mathit{min}}}\) and \(DL-Lite_{\mathit{c}} {\mathbf{T}_{\mathit{min}}}\). In: IJCAI 2011. pp. 894–899 (2011)

    Google Scholar 

  14. Giordano, L., Gliozzi, V., Jalal, A., Olivetti, N., Pozzato, G.L.: Predelo a theorem prover for preferential description logics. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS(LNAI), vol. 8249, pp. 60–72. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential vs rational description logics: which one for reasoning about typicality? In: ECAI 2010, pp. 1069–1070 (2010)

    Google Scholar 

  16. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A NonMonotonic Description Logic for Reasoning About Typicality. Artificial Intelligence 195, 165–202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ke, P., Sattler, U.: Next steps for description logics of minimal knowledge and negation as failure. In: DL 2008. CEUR, vol. 353 (2008)

    Google Scholar 

  18. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1–2), 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krisnadhi, A.A., Sengupta, K., Hitzler, P.: Local closed world semantics: Keep it simple, stupid! In: DL 2011. CEUR, vol. 745 (2011)

    Google Scholar 

  20. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55(1), 1–60 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Motik, B., Rosati, R.: Reconciling DLs and rules. J. ACM 57(5) (2010)

    Google Scholar 

  22. Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: IJCAI 1993, pp. 676–681 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Luca Pozzato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L., Violanti, L. (2015). A Multi-engine Theorem Prover for a Description Logic of Typicality. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds) AI*IA 2015 Advances in Artificial Intelligence. AI*IA 2015. Lecture Notes in Computer Science(), vol 9336. Springer, Cham. https://doi.org/10.1007/978-3-319-24309-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24309-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24308-5

  • Online ISBN: 978-3-319-24309-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics