Introducing Negative Evidence in Ensemble Clustering Application in Automatic ECG Analysis | SpringerLink
Skip to main content

Introducing Negative Evidence in Ensemble Clustering Application in Automatic ECG Analysis

  • Conference paper
  • First Online:
Similarity-Based Pattern Recognition (SIMBAD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9370))

Included in the following conference series:

Abstract

Ensemble clustering generates data partitions by using different data representations and/or clustering algorithms. Each partition provides independent evidence to generate the final partition: two instances falling in the same cluster provide evidence towards them belonging to the same final partition.

In this paper we argue that, for some data representations, the fact that two instances fall in the same cluster of a given partition could provide little to no evidence towards them belonging to the same final partition. However, the fact that they fall in different clusters could provide strong negative evidence of them belonging to the same partition.

Based on this concept, we have developed a new ensemble clustering algorithm which has been applied to the heartbeat clustering problem. By taking advantage of the negative evidence we have decreased the misclassification rate over the MIT-BIH database, the gold standard test for this problem, from 2.25 % to 1.45 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5491
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakker, B., Heskes, T.: Clustering ensembles of neural network models. Neural Netw. 16(2), 261–269 (2003)

    Article  Google Scholar 

  2. Blanco-Velasco, M., Weng, B., Barner, K.E.: ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med. 38(1), 1–13 (2008)

    Article  Google Scholar 

  3. Celebi, M.E.: Partitional Clustering Algorithms. Springer, Cham (2014)

    MATH  Google Scholar 

  4. de Chazal, P., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)

    Article  Google Scholar 

  5. de Chazal, P., Reilly, R.B.: A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 53(12 Pt 1), 2535–2543 (2006)

    Article  Google Scholar 

  6. Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19(9), 1090–1099 (2003)

    Article  Google Scholar 

  7. Fred, A.: Finding Consistent Clusters in Data Partitions. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 309–318. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Fred, A.L., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Analy. Mach. Intell. 27(6), 835–850 (2005)

    Article  Google Scholar 

  9. García, C.A., Otero, A., Vila, X., Márquez, D.G.: A new algorithm for wavelet-based heart rate variability analysis. Biomed. Signal Proces. Control 8(6), 542–550 (2013)

    Article  Google Scholar 

  10. Gil, A., Caffarena, G., Márquez, D.G., Otero, A.: Hermite Polynomial Characterization of Heartbeats with Graphics Processing Units. In: IWBBIO 2014 (2014)

    Google Scholar 

  11. Hong, Y., Kwong, S., Chang, Y., Ren, Q.: Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm. Pattern Recogn. 41(9), 2742–2756 (2008)

    Article  MATH  Google Scholar 

  12. Jane, R., Olmos, S., Laguna, P.: Adaptive Hermite models for ECG data compression: performance and evaluation with automatic wave detection. In: Computers in Cardiology (1993)

    Google Scholar 

  13. Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., Sörnmo, L.: Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47(7), 838–848 (2000)

    Article  Google Scholar 

  14. Madeiro, J.P., Cortez, P.C., Oliveira, F.I., Siqueira, R.S.: A new approach to QRS segmentation based on wavelet bases and adaptive threshold technique. Med. Eng. Phys. 29(1), 26–37 (2007)

    Article  Google Scholar 

  15. Márquez, D.G., Otero, A., Félix, P., García, C.A.: On the Accuracy of Representing Heartbeats with Hermite Basis Functions. In: BIOSIGNALS 2013, pp. 338–341 (2013)

    Google Scholar 

  16. Mathers, C.D., Loncar, D.: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3(11), e442 (2006)

    Article  Google Scholar 

  17. Moody, G., Mark, R.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  18. Park, K., Cho, B., Lee, D., Song, S., Lee, J., Chee, Y., Kim, I., Kim, S.: Hierarchical support vector machine based heartbeat classification using higher order statistics and Hermite basis function. In: 2008 Computers in Cardiology, pp. 229–232. IEEE, September 2008

    Google Scholar 

  19. Rodríguez-Fdez, I., Canosa, A., Mucientes, M., Bugarín, A.: STAC: a web platform for the comparison of algorithms using statistical tests (2015). http://tec.citius.usc.es/stac

  20. Sokal, R.R.: A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38, 1409–1438 (1958)

    Google Scholar 

  21. Sörnmo, L., Laguna, P.: Bioelectrical signal processing in cardiac and neurological applications. Elsevier Academic Press, New York (2005)

    Google Scholar 

  22. Topchy, A.P., Jain, A.K., Punch, W.F.: A mixture model for clustering ensembles. In: SDM, pp. 379–390. SIAM (2004)

    Google Scholar 

  23. Young, T.Y., Huggins, W.H.: On the representation of electrocardiograms. IEEE Trans. Bio-Med. Electron. 10(3), 86–95 (1963)

    Article  Google Scholar 

  24. Zhang, Z., Dong, J., Luo, X., Choi, K.S., Wu, X.: Heartbeat classification using disease-specific feature selection. Comput. Biol. Med. 46, 79–89 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the University San Pablo CEU under the grant PPC12/2014. David G. Márquez is funded by an FPU Grant from the Spanish Ministry of Education (MEC) (Ref. AP2012-5053). Constantino A. García acknowledges the support of Xunta de Galicia under “Plan I2C” Grant program (partially cofunded by The European Social Fund of the European Union).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Márquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Márquez, D.G., Fred, A.L.N., Otero, A., García, C.A., Félix, P. (2015). Introducing Negative Evidence in Ensemble Clustering Application in Automatic ECG Analysis. In: Feragen, A., Pelillo, M., Loog, M. (eds) Similarity-Based Pattern Recognition. SIMBAD 2015. Lecture Notes in Computer Science(), vol 9370. Springer, Cham. https://doi.org/10.1007/978-3-319-24261-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24261-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24260-6

  • Online ISBN: 978-3-319-24261-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics