Intelligent Bio-Inspired Detection of Food Borne Pathogen by DNA Barcodes: The Case of Invasive Fish Species Lagocephalus Sceleratus | SpringerLink
Skip to main content

Intelligent Bio-Inspired Detection of Food Borne Pathogen by DNA Barcodes: The Case of Invasive Fish Species Lagocephalus Sceleratus

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 517))

Abstract

Climate change combined with the increase of extreme weather phenomena, has significantly influenced marine ecosystems, resulting in water overheating, increase of sea level and rising of the acidity of surface waters. The potential impacts in the biodiversity of sensitive ecosystems (such as Mediterranean sea) are obvious. Many organisms are under extinction, whereas other dangerous invasive species are multiplied and thus they are destroying the ecological equilibrium. This research paper presents the development of a sophisticated, fast and accurate Food Pathogen Detection (FPD) system, which uses the biologically inspired Artificial Intelligence algorithm of Extreme Learning Machines. The aim is the automated identification and control of the extremely dangerous for human health invasive fish species “Lagocephalus Sceleratus”. The matching is achieved through extensive comparisons of protein and DNA sequences, known also as DNA barcodes following an ensemble learning approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Frank, J.R., Olden, J.D.: Assessing the Effects of Climate Change on Aquatic Invasive Species. Conservation Biology 22(3), 521–533 (2008). doi:10.1111/j.1523-1739.2008.00950.x. Society for Conservation Biology

    Article  Google Scholar 

  2. Kheifets, J., Rozhavsky, B., Solomonovich, Z.G., Rodman, M., Soroksky, A.: Severe Tetrodotoxin Poisoning after Consumption of Lagocephalus sceleratus (Pufferfish, Fugu) Fished in Mediterranean Sea, Treated with Cholinesterase Inhibitor. Case Reports in Critical Care 2012, Article ID 782507, 3 p. (2012). doi:10.1155/2012/782507

  3. Akova, F., Dundar, M., Davisson, V.J., Hirleman, D.E., Bhunia, A.K., Robinson, J.P., Rajwa, B.: A Machine-Learning Approach to Detecting Unknown Bacterial Serovars. Statistical Analysis and Data Mining (2011). doi:10.1002/sam.10085

  4. Pan, W., Zhao, J., Chen, Q.: Classification of foodborne pathogens using near infrared laser scatter imaging system with multivariate calibration (2015). doi:10.1038/srep09524

  5. Rajwa, B., Dundar, M.M., Akova, F., Bettasso, A., Patsekin, V., Hirleman, E.D., Bhunia, A.K., Robinson, J.P.: Discovering the Unknown: Detection of Emerging Pathogens Using a Label-Free Light-Scattering System. Cytometry Part A 77A, 1103–1112 (2010)

    Article  Google Scholar 

  6. Rajwa, B., Venkatapathi, M., Ragheb, K., Banada, P.P., Hirleman, E.D., Lary, T., Robinson, J.P.: Automated classification and recognition of bacterial particles in flow by multi-angle scatter measurement and a support-vector machine classifier. Cytometry A 73(4), 369–379 (2008). doi:10.1002/cyto.a.20515

    Article  Google Scholar 

  7. Pan, Y.: Protein structure prediction and understanding using machine learning methods. In: 2005 IEEE Granular Computing, vol. 1 (2005). doi:10.1109/GRC.2005.1547225

  8. Ma, X., Hu, L.: Extracting sequence features to predict DNA-binding proteins using support vector machine. In: 2013 Fifth International Conference on Computational and Information Sciences (ICCIS) (2013). doi:10.1109/ICCIS.2013.48

  9. Yu, D.-J., Hu, J., Li, Q.M., Tang, Z.M., Yang, J.Y., Shen, H.B.: Constructing Query-Driven Dynamic Machine Learning Model With Application to Protein-Ligand Binding Sites Prediction. NanoBioscience, IEEE, 14(1) (2015)

    Google Scholar 

  10. Leigh, D., Thredgold, E.A.V., Lenehan, C.E.: Direct detection of histamine in fish flesh using microchip electrophoresis with capacitively coupled contactless conductivity detection. Anal. Methods, 1802–1808 (2015). doi:10.1039/C4AY02866J

  11. http://www.bio-rad.com/

  12. Lipman, D.J., Pearson, W.R.: Rapid and sensitive protein similarity searches. Science 227(4693), 1435–1441 (1985). doi:10.1126/science.2983426. PMID 2983426

    Article  Google Scholar 

  13. Moraglio, A., Di Chio, C., Poli, R.: Geometric Particle Swarm Optimization 2008, Article ID 143624, 14 p. (2008). doi:10.1155/2008/143624

  14. Rokach, Lior: Ensemble-based classifiers. Artificial Intelligence Review 33(1–2), 1–39 (2010). doi:10.1007/s10462-009-9124-7

    Article  Google Scholar 

  15. Cambria, E., Huang, G.-B.: Extreme Learning Machines. IEEE Intelligent Systems (2013)

    Google Scholar 

  16. Huang, G.-B.: An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels (2014). doi:10.1007/s12559-014-9255-2, Springer

  17. http://www.cabi.org/isc/

  18. http://www.boldsystems.org/

  19. Nitesh, V., Chawla, B.K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research 16 (2002)

    Google Scholar 

  20. http://www.ebi.ac.uk/Tools/sss/fasta/

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Konstantinos Demertzis or Lazaros Iliadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Demertzis, K., Iliadis, L. (2015). Intelligent Bio-Inspired Detection of Food Borne Pathogen by DNA Barcodes: The Case of Invasive Fish Species Lagocephalus Sceleratus. In: Iliadis, L., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2015. Communications in Computer and Information Science, vol 517. Springer, Cham. https://doi.org/10.1007/978-3-319-23983-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23983-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23981-1

  • Online ISBN: 978-3-319-23983-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics