Abstract
Temporal logics targeting real-time systems are traditionally undecidable. Based on a restricted fragment of MTL-\(\int \), we propose a new approach for the runtime verification of hard real-time systems. The novelty of our technique is that it is based on incremental evaluation, allowing us to effectively treat duration properties (which play a crucial role in real-time systems). We describe the two levels of operation of our approach: offline simplification by quantifier removal techniques; and online evaluation of a three-valued interpretation for formulas of our fragment. Our experiments show the applicability of this mechanism as well as the validity of the provided complexity results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)
Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992)
Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics. Springer, Heidelberg (2006)
Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. Inf. Comput. 208(2), 97–116 (2010)
Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.B.: On expressiveness and complexity in real-time model checking. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 124–135. Springer, Heidelberg (2008)
Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition: a synopsis. SIGSAM Bull. 10(1), 10–12 (1976)
Gordon, R.A.: The Integrals of Lebesgue. Denjoy, Perron, and Henstock. Graduate studies in mathematics. American Mathematical Society, Providence (1994)
Hansen, M.R., Van Hung, D.: A theory of duration calculus with application. In: George, C.W., Liu, Z., Woodcock, J. (eds.) Domaine Modeling. LNCS, vol. 4710, pp. 119–176. Springer, Heidelberg (2007)
Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About Systems. Cambridge University Press, New York (2004)
Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)
Lakhneche, Y., Hooman, J.: Metric temporal logic with durations. Theor. Comput. Sci. 138(1), 169–199 (1995)
Pedro, A.M., Pereira, D., Pinho, L.M., Pinto, J.S.: Logic-based schedulability analysis for compositional hard real-time embedded systems. SIGBED Rev. 12(1), 56–64 (2015)
Ničković, D., Piterman, N.: From Mtl to deterministic timed automata. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152–167. Springer, Heidelberg (2010)
Ouaknine, J., Worrell, J.B.: Safety metric temporal logic is fully decidable. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425. Springer, Heidelberg (2006)
Ouaknine, J., Worrell, J.B.: Some recent results in metric temporal logic. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidelberg (2008)
Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime monitor. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–359. Springer, Heidelberg (2010)
Pnueli, A.: The temporal logic of programs. SFCS 1977, pp. 46–57. IEEE Computer Society, Washington (1977)
Shin, I., Lee, I.: Periodic resource model for compositional real-time guarantees. RTSS 2003, pp. 2-. IEEE Computer Society, Washington (2003)
Tarski, A.: Introduction to Logic and to the Methodology of Deductive Sciences. Dover Books on Mathematics Series. Dover Publications, New York (1995)
Acknowledgments
This work was partially supported by National Funds through FCT/MEC (Portuguese Foundation for Science and Technology), co-financed by ERDF (European Regional Development Fund) under the PT2020 Partnership, within project UID/CEC/04234/2013 (CISTER); by FCT/MEC and the EU ARTEMIS JU within project ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
de Matos Pedro, A., Pereira, D., Pinho, L.M., Pinto, J.S. (2015). Monitoring for a Decidable Fragment of MTL-\(\int \) . In: Bartocci, E., Majumdar, R. (eds) Runtime Verification. Lecture Notes in Computer Science(), vol 9333. Springer, Cham. https://doi.org/10.1007/978-3-319-23820-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-23820-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23819-7
Online ISBN: 978-3-319-23820-3
eBook Packages: Computer ScienceComputer Science (R0)