Specular Sets | SpringerLink
Skip to main content

Specular Sets

  • Conference paper
  • First Online:
Combinatorics on Words (WORDS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9304))

Included in the following conference series:

  • International Conference on Combinatorics on Words

Abstract

We introduce specular sets. These are subsets of groups which form a natural generalization of free groups. These sets are an abstract generalization of the natural codings of interval exchanges and of linear involutions. We prove several results concerning the subgroups generated by return words and by maximal bifix codes in these sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berstel, J., De Felice, C., Perrin, D., Reutenauer, C., Rindone, G.: Bifix codes and sturmian words. J. Algebra 369, 146–202 (2012)

    Article  MathSciNet  Google Scholar 

  2. Berthé, V., Delecroix, V., Dolce, F., Perrin, D., Reutenauer, C., Rindone, G.: Return words of linear involutions and fundamental groups. Ergodic Th. Dyn. Syst. (2015, To appear). http://arxiv.org/abs/1405.3529

  3. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: The finite index basis property. J. Pure Appl. Algebra 219, 2521–2537 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bartholdi, L.: Growth of groups and wreath products (2014, preprint)

    Google Scholar 

  5. de la Harpe, P.: Topics in Geometric Group Theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (2000)

    MATH  Google Scholar 

  6. Pelantová, E., Starosta, Š.: Palindromic richness for languages invariant under more symmetries. Theoret. Comput. Sci. 518, 42–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berthé, V., De Felice, C., Delecroix, V., Dolce, F., Perrin, D., Reutenauer, C., Rindone, G.: Specular sets. In: Manea, F., Nowotka, D. (eds.) WORDS 2015. Lecture Notes in Computer Science, vol. 9304, pp. xx–yy. Springer, Heidelberg (2015). https://arXiv.org/abs/1505.00707

  8. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: Acyclic, connected and tree sets. Monats. Math. 176, 521–550 (2015)

    Article  Google Scholar 

  9. Cassaigne, J.: Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin 4(1), 67–88 (1997). Journées Montoises (Mons, 1994)

    MathSciNet  Google Scholar 

  10. Berthé, V., Rigo, M.: Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  11. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  12. Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory, 2nd edn. Dover Publications Inc, Mineola, NY (2004)

    MATH  Google Scholar 

  13. Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Classics in Mathematics. Springer, Heidelberg (2001). Reprint of the 1977 edition

    Google Scholar 

  14. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: Maximal bifix decoding. Discrete Math. 338, 725–742 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255(1–2), 539–553 (2001)

    Article  MathSciNet  Google Scholar 

  16. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J. Combin. 30(2), 510–531 (2009)

    Article  MathSciNet  Google Scholar 

  17. Baláži, P., Masáková, Z., Pelantová, E.: Factor versus palindromic complexity of uniformly recurrent infinite words. Theoret. Comput. Sci. 380(3), 266–275 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dolce, F., Perrin, D.: Enumeration formulæ in neutral sets (2015, submitted). http://arxiv.org/abs/1503.06081

Download references

Acknowledgments

The authors thank Laurent Bartholdi and Pierre de la Harpe for useful indications. This work was supported by grants from Région Île-de-France and ANR project Eqinocs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Perrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Berthé, V. et al. (2015). Specular Sets. In: Manea, F., Nowotka, D. (eds) Combinatorics on Words. WORDS 2015. Lecture Notes in Computer Science(), vol 9304. Springer, Cham. https://doi.org/10.1007/978-3-319-23660-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23660-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23659-9

  • Online ISBN: 978-3-319-23660-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics