Abstract
We introduce specular sets. These are subsets of groups which form a natural generalization of free groups. These sets are an abstract generalization of the natural codings of interval exchanges and of linear involutions. We prove several results concerning the subgroups generated by return words and by maximal bifix codes in these sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berstel, J., De Felice, C., Perrin, D., Reutenauer, C., Rindone, G.: Bifix codes and sturmian words. J. Algebra 369, 146–202 (2012)
Berthé, V., Delecroix, V., Dolce, F., Perrin, D., Reutenauer, C., Rindone, G.: Return words of linear involutions and fundamental groups. Ergodic Th. Dyn. Syst. (2015, To appear). http://arxiv.org/abs/1405.3529
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: The finite index basis property. J. Pure Appl. Algebra 219, 2521–2537 (2015)
Bartholdi, L.: Growth of groups and wreath products (2014, preprint)
de la Harpe, P.: Topics in Geometric Group Theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (2000)
Pelantová, E., Starosta, Š.: Palindromic richness for languages invariant under more symmetries. Theoret. Comput. Sci. 518, 42–63 (2014)
Berthé, V., De Felice, C., Delecroix, V., Dolce, F., Perrin, D., Reutenauer, C., Rindone, G.: Specular sets. In: Manea, F., Nowotka, D. (eds.) WORDS 2015. Lecture Notes in Computer Science, vol. 9304, pp. xx–yy. Springer, Heidelberg (2015). https://arXiv.org/abs/1505.00707
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: Acyclic, connected and tree sets. Monats. Math. 176, 521–550 (2015)
Cassaigne, J.: Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin 4(1), 67–88 (1997). Journées Montoises (Mons, 1994)
Berthé, V., Rigo, M.: Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press, Cambridge (2010)
Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, Cambridge (2009)
Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory, 2nd edn. Dover Publications Inc, Mineola, NY (2004)
Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Classics in Mathematics. Springer, Heidelberg (2001). Reprint of the 1977 edition
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: Maximal bifix decoding. Discrete Math. 338, 725–742 (2015)
Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255(1–2), 539–553 (2001)
Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J. Combin. 30(2), 510–531 (2009)
Baláži, P., Masáková, Z., Pelantová, E.: Factor versus palindromic complexity of uniformly recurrent infinite words. Theoret. Comput. Sci. 380(3), 266–275 (2007)
Dolce, F., Perrin, D.: Enumeration formulæ in neutral sets (2015, submitted). http://arxiv.org/abs/1503.06081
Acknowledgments
The authors thank Laurent Bartholdi and Pierre de la Harpe for useful indications. This work was supported by grants from Région Île-de-France and ANR project Eqinocs.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Berthé, V. et al. (2015). Specular Sets. In: Manea, F., Nowotka, D. (eds) Combinatorics on Words. WORDS 2015. Lecture Notes in Computer Science(), vol 9304. Springer, Cham. https://doi.org/10.1007/978-3-319-23660-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-23660-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23659-9
Online ISBN: 978-3-319-23660-5
eBook Packages: Computer ScienceComputer Science (R0)