Combining Heuristics for Configuration Problems Using Answer Set Programming | SpringerLink
Skip to main content

Combining Heuristics for Configuration Problems Using Answer Set Programming

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9345))

Abstract

This paper describes an abstract problem derived from a combination of Siemens product configuration problems encountered in practice. Often isolated parts of configuration problems can be solved by mapping them to well-studied problems for which efficient heuristics exist (graph coloring, bin-packing, etc.). Unfortunately, these heuristics may fail to work when applied to a problem that combines two or more subproblems. In the paper we show how to formulate a combined configuration problem in Answer Set Programming (ASP) and to solve it using heuristics à la hclasp. In addition, we present a novel method for heuristic generation based on a combination of greedy search with ASP that allows to improve the performance of an ASP solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The instances were taken from: http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm.

  2. 2.

    The evaluation was performed using clingo version 4.3.0 from the Potassco ASP collection [7] on a system with Intel i7-3030K CPU (3.20 GHz) and 64 GB of RAM, running Ubuntu 11.10.

  3. 3.

    The instances are available at: http://isbi.aau.at/hint/problems.

References

  1. Aschinger, M., Drescher, C., Friedrich, G., Gottlob, G., Jeavons, P., Ryabokon, A., Thorstensen, E.: Optimization methods for the partner units problem. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 4–19. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Aschinger, M., Drescher, C., Gottlob, G., Jeavons, P., Thorstensen, E.: Tackling the partner units configuration problem. In: Proceedings of IJCAI, pp. 497–503 (2011)

    Google Scholar 

  3. Balduccini, M.: Learning and using domain-specific heuristics in ASP solvers. AI Commun. 24(2), 147–164 (2011)

    MATH  MathSciNet  Google Scholar 

  4. Cipriano, R., Di Gaspero, L., Dovier, A.: A hybrid solver for large neighborhood search: mixing gecode and easylocal++. In: Hybrid Metaheuristics, pp. 141–155 (2009)

    Google Scholar 

  5. Friedrich, G., Ryabokon, A., Falkner, A.A., Haselböck, A., Schenner, G., Schreiner, H.: (Re) configuration based on model generation. In: LoCoCo Workshop, pp. 26–35 (2011)

    Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Morgan & Claypool Publishers, San Rafael (2012)

    Google Scholar 

  8. Gebser, M., Kaufmann, B., Romero, J., Otero, R., Schaub, T., Wanko, P.: Domain-specific heuristics in answer set programming. In: Proceedings of AAAI (2013)

    Google Scholar 

  9. Haselböck, A., Schenner, G.: S’UPREME. In: Knowledge-Based Configuration: From Research to Business Cases, pp. 263–269 (2014)

    Google Scholar 

  10. Hotz, L., Felfernig, A., Stumptner, M., Ryabokon, A., Bagley, C., Wolter, K.: Configuration knowledge representation and reasoning. In: Knowledge-Based Configuration: From Research to Business Cases, pp. 41–72 (2014)

    Google Scholar 

  11. Madigan, C., Malik, S., Moskewicz, M., Zhang, L., Zhao, Y.: Chaff: engineering an efficient SAT solver. In: Proceedings of DAC (2001)

    Google Scholar 

  12. Mayer, W., Bettex, M., Stumptner, M., Falkner, A.: On solving complex rack configuration problems using CSP methods. In: Proceedings of the IJCAI Workshop on Configuration (2009)

    Google Scholar 

  13. McDermott, J.: R1: a rule-based configurer of computer systems. Artif. Intell. 19(1), 39–88 (1982)

    Article  Google Scholar 

  14. Ryabokon, A., Friedrich, G., Falkner, A.A.: Conflict-based program rewriting for solving configuration problems. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 465–478. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Schenner, G., Falkner, A., Ryabokon, A., Friedrich, G.: Solving object-oriented configuration scenarios with ASP. In: Proceedings of the Configuration Workshop, pp. 55–62 (2013)

    Google Scholar 

  16. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.J.: Search combinators. Constraints 18(2), 269–305 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sinz, C., Haag, A.: Configuration. IEEE Intell. Syst. 22(1), 78–90 (2007)

    Article  Google Scholar 

  18. Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing configuration knowledge with weight constraint rules. In: Proceedings of the Workshop on ASP, pp. 195–201 (2001)

    Google Scholar 

  19. Stumptner, M.: An overview of knowledge-based configuration. AI Commun. 10(2), 111–125 (1997)

    Google Scholar 

  20. Teppan, E.C., Friedrich, G., Falkner, A.A.: QuickPup: a heuristic backtracking algorithm for the partner units configuration problem. In: Proceedings of IAAI, pp. 2329–2334 (2012)

    Google Scholar 

  21. Tiihonen, J., Heiskala, M., Anderson, A., Soininen, T.: WeCoTin - a practical logic-based sales configurator. AI Commun. 26(1), 99–131 (2013)

    MathSciNet  Google Scholar 

  22. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments. J. Global Optim. 37(1), 95–111 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was funded by COIN and AoF under grant 251170 as well as by FFG under grant 840242. The authors would like to thank all anonymous reviewers for their comments and Konstantin Schekotihin for helpful discussions on the subject of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Ryabokon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gebser, M., Ryabokon, A., Schenner, G. (2015). Combining Heuristics for Configuration Problems Using Answer Set Programming. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2015. Lecture Notes in Computer Science(), vol 9345. Springer, Cham. https://doi.org/10.1007/978-3-319-23264-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23264-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23263-8

  • Online ISBN: 978-3-319-23264-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics