The Singular Estimation Pitch Tracker | SpringerLink
Skip to main content

The Singular Estimation Pitch Tracker

  • Conference paper
  • First Online:
Speech and Computer (SPECOM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9319))

Included in the following conference series:

Abstract

A model of singular estimation process of speech fundamental pitch frequency is reviewed. Existing solutions for the known classes of mathematical problems (Singular spectrum analysis, fast Fourier transform, and convolution) are used to develop a numerical implementation of the model. The evaluation of the fundamental pitch frequency with existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheveigne A., Kawahara H.: Comparative evaluation of F0 estimation algorithms. In: Proceedings Eurospeech (2001)

    Google Scholar 

  2. Karpov, A., Ronzhin, A., Kipyatkova, I.: An assistive bi-modal user interface integrating multi-channel speech recognition and computer vision. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part II, HCII 2011. LNCS, vol. 6762, pp. 454–463. Springer, Heidelberg (2011)

    Google Scholar 

  3. Budkov, V.Y., Ronzhin, A.L., Glazkov, S.V., Ronzhin, A.L.: Event-driven content management system for smart meeting room. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN 2011 and ruSMART 2011. LNCS, vol. 6869, pp. 550–560. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Ronzhin, A.L., Budkov, V.Y., Karpov, A.A.: Multichannel system of audio-visual support of remote mobile participant at e-meeting. In: Balandin, S., Dunaytsev, R., Koucheryavy, Y. (eds.) ruSMART 2010. LNCS, vol. 6294, pp. 62–71. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Talkin D. A.: Robust algorithm for pitch tracking (RAPT). In: Entropic Research Laboratory Suite 202, 600 Pennsylvania Ave. 20003, pp. 495–518 (1995)

    Google Scholar 

  6. Cheveigne, A., Kawahara, H.: YIN, a fundamental frequency estimator for speech and music. JASA 111(4), 1917–1930 (2002)

    Article  Google Scholar 

  7. Camacho, A., Harris, J.G.: A sawtooth waveform inspired pitch estimator for speech and music. JASA 123(4), 1638–1652 (2008)

    Article  Google Scholar 

  8. Hermes, D.J.: Measurement of pitch by subharmonic summation. JASA 83, 257–264 (1988)

    Article  Google Scholar 

  9. Bondarenko, V.P., Konev, A.A., Meshcheryakov, R.V.: Segmentation and parametrisation of a speech signal. Izvestiya Vysshikh Uchebnykh Zavedenii 50(10), 3–7 (2007). (in Russ.)

    Google Scholar 

  10. Azarov E., Vashkevich M., Petrovsky A.: Instantaneous pitch estimation based on RAPT framework. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO 2012), Bucharest, pp. 2787–2791 (2012)

    Google Scholar 

  11. Golyandina, N., Zhigljavsky, A.: Singular Spectrum Analysis for Time Series. Springer Briefs in Statistics, p. 120. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  12. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  13. Brillinger, D.R.: Time Series Data Analysis and Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2001)

    Book  MATH  Google Scholar 

  14. Bagshaw P.C.: Automatic prosodic analysis for computer aided pronunciation teaching. Ph.D. thesis, University of Edinburgh, Edinburgh (1994)

    Google Scholar 

  15. Rabiner, L.R., Cheng, M.J., Rosenberg, A.E.: A comparative study of several pitch detection algorithms. IEEE Trans. Acoust. Speech 24, 399–423 (1976)

    Article  Google Scholar 

  16. Keele Pitch Database Keele Pitch Database. http://www.icocla.it/keele.html

  17. Paul Bagshaw’s Database for evaluating pitch determination algorithms. http://www.cstr.ed.ac.uk/research/projects

  18. Disordered Voice Database. http://www.kayelemetrics.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniyar Volf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Volf, D., Meshcheryakov, R., Kharchenko, S. (2015). The Singular Estimation Pitch Tracker. In: Ronzhin, A., Potapova, R., Fakotakis, N. (eds) Speech and Computer. SPECOM 2015. Lecture Notes in Computer Science(), vol 9319. Springer, Cham. https://doi.org/10.1007/978-3-319-23132-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23132-7_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23131-0

  • Online ISBN: 978-3-319-23132-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics