Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels | SpringerLink
Skip to main content

Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9268))

Abstract

The development of formal methods for control design is an important challenge with potential applications in a wide range of safety-critical cyber-physical systems. Focusing on switched dynamical systems, we propose a new abstraction, based on time-varying regions of invariance (the control funnels), that models behaviors of systems as timed automata. The main advantage of this method is that it allows automated verification of formal specifications and reactive controller synthesis without discretizing the evolution of the state of the system. Efficient constructions are possible in the case of linear dynamics. We demonstrate the potential of our approach with two examples.

This work has been partly supported by ERC Starting grant EQualIS (FP7-308087) and by European FET project Cassting (FP7-601148).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Computer Science 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theor. Computer Science 138(1), 35–65 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: SSSC 1998, pp. 469–474. Elsevier (1998)

    Google Scholar 

  4. Aubin, J.P.: Viability tubes. In: Byrnes, C.I., Kurzhanski, A.B. (eds.) Modelling and Adaptive Control. LNCIS, vol. 105, pp. 27–47. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  5. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-Tiga: time for playing games!. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W., Hendriks, M.: Uppaal 4.0. In: QEST 2006, pp. 125–126. IEEE, September 2006

    Google Scholar 

  7. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor. Computer Science 321(2–3), 291–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. David, A., Grunnet, J.D., Jessen, J.J., Larsen, K.G., Rasmussen, J.I.: Application of model-checking technology to controller synthesis. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 336–351. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. DeCastro, J., Kress-Gazit, H.: Synthesis of nonlinear continuous controllers for verifiably-correct high-level, reactive behaviors. IJRR 34(3), 378–394 (2014)

    Google Scholar 

  10. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from executions. In: EMSOFT 2013, pp. 1–10. IEEE, September 2013

    Google Scholar 

  11. Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Trans. Robotics 21(6), 1077–1091 (2005)

    Article  Google Scholar 

  12. Fu, J., Topcu, U.: Computational methods for stochastic control with metric interval temporal logic specifications. Tech. Rep. 1503.07193, ArXiv, Mar 2015

    Google Scholar 

  13. Julius, A.A., Pappas, G.J.: Trajectory based verification using local finite-time invariance. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 223–236. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Koiran, P., Cosnard, M., Garzon, M.: Computability with low-dimensional dynamical systems. Theor. Computer Science 132(1), 113–128 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Le Ny, J., Pappas, G.J.: Sequential composition of robust controller specifications. In: ICRA 2012, pp. 5190–5195. IEEE, May 2012

    Google Scholar 

  16. Liu, J., Prabhakar, P.: Switching control of dynamical systems from metric temporal logic specifications. In: ICRA 2014, pp. 5333–5338. IEEE, May 2014

    Google Scholar 

  17. Majumdar, A., Ahmadi, A.A., Tedrake, R.: Control design along trajectories with sums of squares programming. In: ICRA 2013, pp. 4054–4061. IEEE, May 2013

    Google Scholar 

  18. Majumdar, A., Tedrake, R.: Robust online motion planning with regions of finite time invariance. In: WAFR 2012. STAR, vol. 86, pp. 543–558. Springer, Heidelberg (2013)

    Google Scholar 

  19. Maler, O., Batt, G.: Approximating continuous systems by timed automata. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 77–89. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) Real-Time: Theory in Practice. LNCS, vol. 600, pp. 447–484. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  21. Mason, M.T.: The mechanics of manipulation. In: ICRA 1985, vol. 2, pp. 544–548. IEEE , March 1985

    Google Scholar 

  22. Quottrup, M.M., Bak, T., Zamanabadi, R.I.: Multi-robot planning : a timed automata approach. In: ICRA 2004, vol. 5, pp. 4417–4422. IEEE, April 2004

    Google Scholar 

  23. Sloth, C., Wisniewski, R.: Timed game abstraction of control systems. Tech. Rep. 1012.5113, ArXiv, December 2010

    Google Scholar 

  24. Sloth, C., Wisniewski, R.: Complete abstractions of dynamical systems by timed automata. Nonlinear Analysis: Hybrid Systems 7(1), 80–100 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Sontag, E.D.: Mathematical control theory: deterministic finite dimensional systems. Springer (1998)

    Google Scholar 

  26. Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts, J.W.: LQR-trees: Feedback motion planning via sums-of-squares verification. IJRR 29(8), 1038–1052 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Perrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bouyer, P., Markey, N., Perrin, N., Schlehuber-Caissier, P. (2015). Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels. In: Sankaranarayanan, S., Vicario, E. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2015. Lecture Notes in Computer Science(), vol 9268. Springer, Cham. https://doi.org/10.1007/978-3-319-22975-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22975-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22974-4

  • Online ISBN: 978-3-319-22975-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics