A Dictionary Learning Method for Sparse Representation Using a Homotopy Approach | SpringerLink
Skip to main content

A Dictionary Learning Method for Sparse Representation Using a Homotopy Approach

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9237))

  • 2636 Accesses

Abstract

In this paper, we address the problem of dictionary learning for sparse representation. Considering the regularized form of the dictionary learning problem, we propose a method based on a homotopy approach, in which the regularization parameter is overall decreased along iterations. We estimate the value of the regularization parameter adaptively at each iteration based on the current value of the dictionary and the sparse coefficients, such that it preserves both sparse coefficients and dictionary optimality conditions. This value is, then, gradually decreased for the next iteration to follow a homotopy method. The results show that our method has faster implementation compared to recent dictionary learning methods, while overall it outperforms the other methods in recovering the dictionaries.

This work was partially funded by European project 2012-ERC-AdG-320684 CHESS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54, 4311–4322 (2006)

    Article  Google Scholar 

  2. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Elad, M.: Sparse and redundant representations: from theory to applications in signal and image processing. Springer, New York (2010)

    Book  Google Scholar 

  4. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15, 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  5. Engan, K., Aase, S.O., Hakon-Husoy, J.H.: Method of optimal directions for frame design. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 5, pp. 2443–2446 (1999)

    Google Scholar 

  6. Jafari, M., Plumbley, M.: Fast dictionary learning for sparse representations of speech signals. IEEE Sel. Top. Sign. Process. 5, 1025–1031 (2011)

    Article  Google Scholar 

  7. Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T., Sejnowski, T.: Dictionary learning algorithms for sparse representation. Neural Comput. 15(2), 349–396 (2003)

    Article  MATH  Google Scholar 

  8. Liao, S.: Homotopy analysis method in nonlinear differential equations. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  9. Mancera, L., Portilla, J.: Non-convex sparse optimization through deterministic annealing and applications. In: 15th IEEE International Conference on Image Processing, pp. 917–920 (2008)

    Google Scholar 

  10. Pati, Y., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: 27th Annual Asilomar Conference Signals, Systems and Computers vol. 1, pp. 40–44 (1993)

    Google Scholar 

  11. Smith, L.N., Elad, M.: Improving dictionary learning: multiple dictionary updates and coefficient reuse. IEEE Signal Process. Lett. 20(1), 79–82 (2013)

    Article  Google Scholar 

  12. Wright, S.J., Nowak, R.D., Figueiredo, M.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  13. Yaghoobi, M., Blumensath, T., Davies, M.E.: Dictionary learning for sparse approximations with the majorization method. IEEE Trans. Signal Process. 57(6), 2178–2191 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Niknejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Niknejad, M., Sadeghi, M., Babaie-Zadeh, M., Rabbani, H., Jutten, C. (2015). A Dictionary Learning Method for Sparse Representation Using a Homotopy Approach. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22482-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22481-7

  • Online ISBN: 978-3-319-22482-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics